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Abstract
Millions of computer end users need to perform tasks over 
large spreadsheet data, yet lack the programming knowl-
edge to do such tasks automatically. We present a program-
ming by example methodology that allows end users to 
automate such repetitive tasks. Our methodology involves 
designing a domain-specific language and developing a 
synthesis algorithm that can learn programs in that lan-
guage from user-provided examples. We present instantia-
tions of this methodology for particular domains of tasks: 
(a) syntactic transformations of strings using restricted 
forms of regular expressions, conditionals, and loops, (b) 
semantic transformations of strings involving lookup in 
relational tables, and (c) layout transformations on spread-
sheet tables. We have implemented this technology as an 
add-in for the Microsoft Excel Spreadsheet system and have 
evaluated it successfully over several benchmarks picked 
from various Excel help forums.

1. intRoDuCtion
The IT revolution over the past few decades has resulted 
in two significant advances: the digitization of massive 
amounts of data and widespread access to computational 
devices. It is thus not surprising that more than 500 million 
people worldwide use spreadsheets for storing and manip-
ulating data. These business end users have myriad diverse 
backgrounds and include commodity traders, graphic 
designers, chemists, human resource managers, finance 
professionals, marketing managers, underwriters, compli-
ance officers, and even mailroom clerks—they are not pro-
fessional programmers, but they need to create small, often 
one-off, applications to perform business tasks.4

Unfortunately, the state of the art of interfacing with 
spreadsheets is far from satisfactory. Spreadsheet systems, 
like Microsoft Excel, come with a maze of features, but 
end users struggle to find the correct features to accom-
plish their tasks.12 More significantly, programming is still 
required to perform tedious and repetitive tasks such as 
transforming names or phone numbers or dates from one 
format to another, cleaning data, or extracting data from 
several text files or Web pages into a single document. Excel 
allows users to write macros using a rich inbuilt library of 
string and numerical functions, or to write arbitrary scripts 
in Visual Basic or .Net programming languages. However, 
since end users are not proficient in programming, they find 
it too difficult to write desired macros or scripts. Moreover, 

even skilled programmers might hesitate to write a script for 
a one-off repetitive task.

We performed an extensive case study of spreadsheet 
help forums and observed that string and table process-
ing is a very common class of programming problems 
that end users struggle with. This is not surprising given 
that various languages such as Perl, Awk, and Python were 
designed to support string processing, and that new lan-
guages such as Java and C# provide rich support for string 
processing. During our study, we also observed how novice 
users specified their desired programs to expert users: most 
specifications consisted solely of one or more input–output 
examples. Since input–output examples may underspecify 
a program, the interaction between a novice and an expert 
often involved multiple rounds of communication over 
multiple days. Inspired by this observation, we developed a 
programming by example (PBE), or inductive synthesis, meth-
odology15 that has produced synthesizers that can automati-
cally generate a wide range of string/table manipulating 
programs in spreadsheets from input–output examples. 
Each synthesizer takes the role of the forum expert, remov-
ing a human from the interaction loop and enabling users 
to solve their problems in a few seconds instead of few days.

This paper is organized as follows. We start with a brief 
overview of our PBE methodology (Section 2). We then 
describe an application of this methodology to perform syn-
tactic string manipulation tasks (Section 3).6 This is followed 
by an extension that automates more sophisticated seman-
tic string manipulations requiring background knowledge, 
which can often be encoded as relational tables (Section 4).18 
We also describe an application of this methodology to 
perform layout transformations on tables (Section 5).8 In 
Section 6, we discuss related work, and in Section 7, we con-
clude and discuss future work.

2. oVERViEW
In this section, we outline a general methodology that we 
have used for developing inductive synthesizers for end-user 
programming tasks, along with how a user can interact with 
the synthesizers. In the first step of our methodology, we 
identify a domain of useful tasks that end users struggle with 
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and can clearly describe with examples, by studying help 
forums or performing user studies (this paper presents two 
domains: string manipulation and table manipulation). We 
then develop the following.

Domain-specific language: We design a domain-specific 
language L that is expressive enough to capture several real-
world tasks in the domain, but also restricted enough to 
enable efficient learning from examples.

Data structure for representing consistent programs: The 
number of programs in L that are consistent with a given set 
of input–output examples can be huge. We define a data 
structure D based on a version-space algebra14 to  succinctly 
represent a large set of such programs.

Algorithm for synthesizing consistent programs: Our 
synthesis algorithm for language L applies two key proce-
dures: (i) Generate learns the set of all programs, repre-
sented using data structure D, that are consistent with a 
given  single example. (ii) Intersect intersects these sets 
(each corresponding to a different example).

Ranking: We develop a scheme that ranks programs, 
preferring programs that are more general. Each ranking 
scheme is inspired by Occam’s razor, which states that a 
smaller and simpler explanation is usually the correct one. 
We define a partial order relationship between programs to 
compare them. Any partial order can be used that efficiently 
orders programs represented in the version-space algebra 
used by the data structure D. Such an order can be applied to 
efficiently select the top-ranked programs from among a set 
represented using D. The ranking scheme can also take into 
account any test inputs provided by the user (i.e., new addi-
tional inputs on which the user may execute a synthesized 
program). A program that is undefined on any test input or 
generates an output whose characteristics are different from 
that of training outputs can be ranked lower.

2.1. interaction models
A user provides to the synthesizer a small number of exam-
ples, and then can interact with the synthesizer according to 
multiple models. In one model, the user runs the top-ranked 
synthesized program on other inputs in the spreadsheet and 
checks the outputs produced by the program. If any output 
is incorrect, the user can fix it and reapply the synthesizer, 
using the fix as an additional example. However, requiring 
the user to check the results of the synthesized program, 
especially on a large spreadsheet, can be cumbersome. To 
enable easier interaction, the synthesizer can run all syn-
thesized programs on each new input to generate a set of 
corresponding outputs for that input. The synthesizer can 
highlight for the user the inputs that cause multiple distinct 
outputs. Our prototypes, implemented as Excel add-ins, 
support this interaction model.

A second model accommodates a user who requires a 
reusable program. In this model, the synthesizer presents 
the set of consistent programs to the user. The synthesizer 
can show the top k programs or walk the user through the 
data structure that succinctly represents all consistent 
programs and let the user select a program. The programs 
can be shown using programming-language syntax, or they 
can be described in a natural language. The differences 

between different programs can be explained by synthesiz-
ing a distinguishing input on which the programs behave 
 differently.10 The user can reapply the synthesizer with the 
distinguishing input and its desired output as an addi-
tional example.

3. sYntactic tRansfoRmations
Spreadsheet users often struggle with reformatting or clean-
ing data in spreadsheet columns. For example, consider the 
following task.

Example 1 (Phone Numbers). An Excel user wants to uni-
formly format the phone numbers in the input column, adding a 
default area code of “425” if the area code is missing.

input v1 output

323-708-7700 323-708-7700
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
235 7654 425-235-7654
745-8139 425-745-8139

Such tasks can be automated by applying a program that 
performs syntactic string transformations. We now present 
an expressive domain-specific language of string-processing 
programs that supports limited conditionals and loops, syn-
tactic string operations such as substring and concatenate, 
and matching based on regular expressions.6

3.1. Domain-specific language
Our domain-specific programming language for perform-
ing syntactic string transformations is given in Figure 1(a). A 
string program P is an expression that maps an input state s, 
which holds values for m string variables v1, … , vm (denoting 
the multiple input columns in a spreadsheet), to an output 
string s. The top-level string expression P is a Switch con-
structor whose arguments are pairs of Boolean expressions 
b and trace expressions e. The set of Boolean expressions in 
a Switch construct must be disjoint, that is, for any input 
state, at most one of the Boolean expressions can be true. 
The value of P in a given input state s is the value of the trace 
expression that corresponds to the Boolean expression satis-
fied by s. A Boolean expression b is a propositional formula 
in Disjunctive Normal Form (DNF). A predicate Match(vi, r, k) 
is satisfied if and only if vi contains at least k nonoverlapping 
matches of regular expression r. (In general, any finite set of 
predicates can be used.)

A trace expression Concatenate(f1, … , fn) is the con-
catenation of strings represented by atomic expressions f1, 
… , fn. An atomic expression f is either a constant-string 
expression ConstStr, a substring expression con-
structed from SubStr, or a loop expression constructed 
from Loop.

The substring expression SubStr(vi, p1, p2) is defined 
partly by two position expressions p1 and p2, each of which 
implicitly refers to the (subject) string vi and must eval-
uate to a position within the string vi. (A string with  
characters has  + 1 positions, numbered from 0 to  
starting from left.) SubStr(vi, p1, p2) is the substring of 
string vi in between positions p1 and p2. For a nonnegative 
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constant k, CPos(k) denotes the kth position in the sub-
ject string. For a negative constant k, CPos(k) denotes 
the ( + 1 + k)th position in the subject string, where 
 = Length(s). Pos(r1,r2,c) is another position expres-
sion, where r1 and r2 are regular expressions and integer 
expression c evaluates to a nonzero integer. Pos(r1,r2,c) 
evaluates to a position t in the subject string s such that 
r1 matches some suffix of s[0:t], and r2 matches some 
prefix of s[t:], where  = Length(s). Furthermore, if c is  
positive (negative), then t is the |c|th such match starting 
from the left side (right side). We use the expression 
s[t1:t2] to denote the substring of s between positions t1 and t2. 
The substring construct is quite expressive. For example, 
in the expression SubStr(vi, Pos(r1,r2,c), Pos(r3,r4,c) ), 
r2 and r3 describe the characteristics of the substring in 
vi to be extracted, while r1 and r4 describe the character-
istics of the surrounding delimiters. We use the expres-
sion SubStr2(vi, r, c) as an abbreviation to denote 
the cth occurrence of regular expression r in vi, that is, 
SubStr(vi, Pos(e, r, c), Pos(r, e, c) ).

A regular expression r is e (which matches the empty 
string, and therefore can match at any position of any 
string), a token t, or a token sequence TokenSeq(t1, …, tn). 
This restricted choice of regular expressions enables 
 efficient enumeration of regular expressions that match 
certain parts of a string. We use the following finite (but eas-
ily extended) set of tokens: (a) StartTok, which matches 
the beginning of a string, (b) EndTok, which matches the 
end of a string, (c) a token for each special character, such 
as hyphen, dot, semicolon, comma, slash, or left/right 
parenthesis/bracket, and (d) two tokens for each character 
class C, one that matches a sequence of one or more char-
acters in C, and another that matches a sequence of one or 
more characters that are not in C. Examples of a character 
class C include numeric digits (0–9), alphabetic characters 
(a–zA–Z), lowercase alphabetic characters (a–z), upper-
case alphabetic characters (A–Z), alphanumeric charac-
ters, and whitespace characters. UpperTok, NumTok, and 
AlphNumTok match a nonempty sequence of uppercase 
alphabetic characters, numeric digits, and alphanumeric 
characters, respectively. DecNumTok matches a non-
empty sequence of numeric digits and/or decimal point. 
HyphenTok and SlashTok match the hyphen character 
and the slash character, respectively.

The task described in Example 1 can be expressed in our 
domain-specific language as

Switch((b
1
, e

1
), (b

2
, e

2
)), where

b1 º Match(v1, NumTok, 3)
b2 º ¬Match(v1, NumTok, 3)
e1 º Concatenate(SubStr2(v1, NumTok, 1), ConstStr(“−”),

SubStr2(v1, NumTok, 2), ConstStr(“−”),
SubStr2(v1, NumTok, 3) )

e2 º  Concatenate(ConstStr(“425–”), SubStr2(v1, Num Tok, 1),
ConstStr(“−”), SubStr2(v1, NumTok, 2) )

The atomic expression Loop(λw : e) is the concatenation 
of e1, e2, …, en, where ei is obtained from e by replacing all 
occurrences of integer w by i, and n is the smallest integer 
such that evaluation of en+1 is undefined. (It is also possible 
to define more interesting termination conditions, e.g., 
based on position expressions or predicates.) A trace expres-
sion e is undefined when (i) a constituent CPos(k) expres-
sion refers to a position not within its subject string, (ii) a 
constituent Pos(r1, r2, c) expression is such that the subject 
string does not contain c occurrences of a match bounded 
by r1 and r2, or (iii) a constituent SubStr(vi, p1, p2) expres-
sion has position expressions that are both defined but 
the first refers to a position that occurs later in the subject 
string than the position indicated by the second. The fol-
lowing example illustrates the utility of the loop construct.

Example 2 (Generate Abbreviation). The following task 
was presented originally as an Advanced Text Formula.23

input v1 output

association of Computing Machinery aCM
Principles Of Programming Languages PoPL
Foundations of software Engineering fse

This task can be expressed in our language as

Loop(λw : Concatenate(SubStr2(v1, UpperTok, w) ) ).

Our tool synthesizes this program from the first example 
row and uses it to produce the entries in the second and 
third rows (shown here in boldface for emphasis) of the 
output column.

figure 1. (a) syntax of syntactic string-processing programs. (b) Data structure for representing a set of such programs.

String program P := Switch ((b1, e1), . . . , (bn, en)) | e ~P := Switch((b1, 
~e1), . . . , (bn, 

~en))

Boolean condition b := d1 ∨ . . . ∨ dn
~e := Dag(~h‚ hs‚ ht, ~ξ, W ),

Conjunction d := π1 ∧ . . . ∧  πn where W :~  ξ → 2f
~

Predicate π := Match(υi, r, k)  |  ¬ Match(υi, r, k) f~ := ConstStr(s)

Trace expr e := Concatenate(f1, . . . , fn)    |    f | SubStr(υi, {
~pj}j , {

~pk}k)

Atomic expr f := ConstStr(s)   |   SubStr(υi, p1, p2)   |   loop(λw : e) | Loop (λw : e~)

Position p := CPos(k)  |  Pos(r1, r2, c) ~p := CPos(k)

Integer expr c := k  |  k1w + k2 | Pos(~r1,
~r2, 

~c)

Regular expr r := TokenSeq(T1, . . . , Tn)    |    T    |    ε

(a) (b)
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3.2. Synthesis algorithm
The synthesis algorithm first computes, for each input–out-
put example (s, s), the set of all trace expressions that map 
input s to output s (using procedure Generate). It then inter-
sects these sets for similar examples and learns conditionals 
to handle different cases (using procedure Intersect). The 
size of such sets can be huge; therefore, we must develop a 
data structure that allows us to succinctly represent and effi-
ciently manipulate huge sets of program expressions.

data structure: Figure 1(b) describes our data structure for 
succinctly representing sets of programs from our domain-
specific language. P

~
, e~, f~, and p~ denote representations of, 

respectively, a set of string programs, a set of trace expres-
sions, a set of atomic expressions, and a set of position expres-
sions. r~ and c~ represent a set of regular expressions and a set 
of integer expressions; these sets are represented explicitly.

The Concatenate constructor used in our string  language 
is generalized to the Dag constructor Dag(h~, hs, ht, x~, W), where 
h~ is a set of nodes containing two distinctly marked source 
and target nodes hs and ht,  x~ is a set of edges over nodes in h~ that 
defines a Directed Acyclic Graph (DAG), and W maps each x Î x~ 

to a set of atomic expressions. The set of all Concatenate 
expressions represented by a Dag(h~, hs, ht, x~, W) constructor 
includes exactly those whose ordered arguments belong to the 
corresponding edges on any path from hs to ht. The Switch, 
Loop, SubStr, and Pos constructors are all overloaded to 
construct sets of the  corresponding program expressions that 
are shown in Figure 1(a). The ConstStr and CPos construc-
tors can be regarded as producing singleton sets.

The data structure supports efficient implementation of 
various useful operations including intersection, enumera-
tion of programs, and their simultaneous execution on a 
given input. The most interesting of these is the intersection 
operation, which is similar to regular automata intersection. 
The additional challenge is to intersect edge labels—in the 
case of automata, the labels are simply sets of characters, 
while in our case, the labels are sets of string expressions.

Procedure Generate: The number of trace expressions 
that can generate a given output string from a given input 
state can be huge. For example, consider the second input–
output pair in Example 1, where the input state consists 
of one string “(425)-706-7709” and the output string is 
“425-706-7709”. Figure 2 shows a small sampling of differ-
ent ways of generating parts of the output string from the 
input string using SubStr and ConstStr constructors. 
Each substring extraction task itself can be expressed with 
a huge number of expressions, as explained later. The fol-
lowing are three of the trace expressions represented in the 
figure, of which only the second one, shown in the figure in 
bold, expresses the program expected by the user:

1. Extract substring “425”. Extract substring “-706-7709”.
2. Extract substring “425”. Print constant “-”. Extract sub-

string “706”. Print constant “-”. Extract substring “7709”.
3. Extract substring “425”. Extract substring “-706”. Print 

constant “-”. Extract substring “7709”.

We apply two crucial observations to succinctly generate 
and represent all such trace expressions. First, the logic for 

generating some substring of an output string is completely 
decoupled from the logic for generating another disjoint 
substring of the output string. Second, the total number of 
different substrings/parts of a string is quadratic (and not 
exponential) in the size of that string.

The Generate procedure creates a Directed Acyclic Graph 
(DAG) Dag(h~, hs, ht, x~, W) that represents the trace set of all trace 
expressions that generate a given output string from a given 
input state. Generate constructs a node corresponding to 
each position within the output string and constructs an edge 
from a node corresponding to any position to a node corre-
sponding to any later position. Each edge corresponds to some 
substring of the output and is annotated with the set of all 
atomic expressions that generate that substring. We describe 
below how to generate the set of all such SubStr expressions. 
Any Loop expressions are generated by first generating candi-
date expressions (by unifying the sets of trace expressions asso-
ciated with the substrings s[k1 : k2] and s[k2 : k3], where k1, k2, and k3 
are the boundaries of the first two loop iterations, identified by 
considering all possibilities), and then validating them.

The number of substring expressions that can extract a 
given substring from a given string can be huge. For exam-
ple, following is a small sample of various expressions that 
extract “706” from the string “425-706-7709” (call it v1).

•	 Second number: SubStr2(v1, NumTok, 2).
•	 2nd last alphanumeric token:  
SubStr2(v1, AlphNum Tok, −2).

•	 Substring between the first hyphen and the last hyphen:
SubStr(v1, Pos(HyphenTok, e, 1), Pos(e, HyphenTok, −1) ).

•	 First number that occurs between hyphen on both ends. 
SubStr( v1, Pos( HyphenTok,  

TokenSeq(NumTok, HyphenTok), 1),
Pos( TokenSeq(HyphenTok, NumTok),  

HyphenTok, 1) ).
•	 First number preceded by a number–hyphen sequence. 
SubStr( v1, Pos( TokenSeq(NumTok, HyphenTok),  

NumTok, 1),
Pos(TokenSeq( NumTok, HyphenTok,  

NumTok), e, 1) ).

Figure 2. Small sampling of different ways of generating parts of an 
output string from the input string.

425 – 706 – 7709

(425)– 706 – 7709

ConstantConstant Constant

Constant

Input

Output
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The substring-extraction problem can be decomposed into 
two independent position-identification problems, each of 
which can be solved independently. The solutions to the 
substring-extraction problem can also be maintained suc-
cinctly by independently representing the solutions to the 
two position-identification problems. Note the representa-
tion of the SubStr constructor in Eq. 1 in Figure 1(b).

Procedure Intersect: Given a trace set for each 
input–output example, the Intersect procedure gener-
ates the top-level Switch constructor. Intersect first 
partitions the examples, so that inputs in the same parti-
tion are handled by the same conditional in the top-level 
Switch expression, and then intersects the trace sets for 
inputs in the same partition. If a set of inputs are in the 
same partition, then the intersection of trace sets is non-
empty. Intersect uses a greedy heuristic to minimize the 
number of partitions by starting with singleton partitions 
and then iteratively merging partitions that have the high-
est compatibility score, which is a function of the size of the 
resulting partition and its potential to be merged with other 
partitions.

Intersect then constructs a classifier for each of the 
resultant partitions, which is a Boolean expression that is 
satisfied by exactly the inputs in the partition. The classifier 
for each partition and the intersection of trace sets for the 
inputs in the partition serve as the Boolean condition and 
corresponding trace expression in the constructed Switch 
expression, respectively.

ranking: We prefer Concatenate and TokenSeq 
expressions that have fewer arguments. We prefer SubStr 
expressions to both ConstStr expressions (it is less 
likely for constant parts of an output string to also occur 
in the input) and Concatenate expressions (if there is 
a long substring match between the input and output, it 
is more likely that the corresponding part of the output 
was produced by a single substring extraction). We prefer 
a Pos expression to CPos expression (giving less prefer-
ence to extraction expressions based on constant offsets). 
StartTok and EndTok are our most preferred tokens; 
otherwise, we prefer tokens corresponding to a larger char-
acter class (favoring generality).

The implementation of the synthesis algorithm is less 
than 5,000 lines of C# code, and takes less than 0.1 s on aver-
age for a benchmark suite of more than 100 tasks obtained 
from online help forums and the Excel product team.

4. SEMAntiC tRAnSFoRMAtionS
Some string transformation tasks also involve manipulating 
strings that need to be interpreted as more than a sequence 
of characters, for example, as a column entry from some 
relational table, or as some standard data type such as date, 
time, currency, or phone number. For example, consider the 
following task from an Excel help forum.

Example 3. A shopkeeper wants to compute the selling 
price of an item (Output) from its name (Input v1 ) and sell-
ing date (Input v2 ). The inventory database of the shop con-
sists of two tables: (i) MarkupRec table that stores id, name 
and markup percentage of items, and (ii) CostRec table 

MarkupRec

id name Markup

S33 Stroller 30%
B56 Bib 45%
d32 diapers 35%
W98 Wipes 40%
A46 Aspirator 30%
. . . . . . . . .

CostRec

id Date Price
S33 12/2010 $145.67
S33 11/2010 $142.38
B56 12/2010 $3.56
d32 1/2011 $21.45
W98 4/2009 $5.12
A46 2/2010 $2.56
. . . . . . . . .

that stores id, purchase  date (in month/year format), and 
purchase   price of items. The selling price of an item is 
computed by adding its purchase price (for the corresponding 
month) to its markup charges, which in turn is calculated by 
multiplying the markup percentage by the purchase price.

input v1 input v2 output

Stroller 10/12/2010 $145.67 + 0.30*145.67
Bib 23/12/2010 $3.56 + 0.45*3.56
diapers 21/1/2011 $21.45 + 0.35*21.45
Wipes 2/4/2009 $5.12 + 0.40*5.12
Aspirator 23/2/2010 $2.56 + 0.30*2.56

To perform the above task, the user must perform a join of 
the two tables on the common item Id column to lookup the 
item Price from its Name (v1) and selling Date (substring 
of v2). We present an extension to the trace expression 
(from Section 3.1) that can also manipulate strings present 
in such relational tables.18

4.1. Domain-specific language
We extend the trace expression (from Section 3.1), as shown 
in Figure 3(a), to obtain the semantic string transformation 
language that can also perform table lookup operations. 
The atomic expression f is modified to represent a constant 
string, a select expression, or a substring of a select expres-
sion. A select expression et is either an input string variable 
vi or a lookup expression denoted by Select(Col, Tab, g), 
where Tab is a relational table identifier and Col is a col-
umn identifier of the table. The Boolean condition g is an 
ordered conjunction of column predicates h1∧…∧hn, where 
a column predicate h is an equality comparison between 
the content of some column of the table and a constant or 
a trace expression e. We require columns present in these 
conditions to together constitute a primary key of the table 
to ensure that the select queries produce a single string as 
opposed to a set of strings.

The task in Example 3 can be represented in the lan-
guage as

Concatenate (f1, ConstStr(“+0.”), f2, ConstStr(“*”), f3)  
where f1 ≡ Select(Price, CostRec, Id = f4 ∧ Date = f5),
f4 ≡ Select(Id, MarkupRec, Name = v1),
f5 ≡ SubStr(v2, Pos(SlashTok, e, 1), Pos(e, EndTok, 1) ),
f2 ≡ SubStr2(f6, NumTok, 1),  f3 ≡ SubStr2(f1, DecNum Tok, 1),
f6 ≡ Select(Markup, MarkupRec, Name = v1).
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where e1 = SubStr2(v1, NumTok, 1), e2 = SubStr2(v1, 
NumTok, 2), e3 = SubStr2(v1, NumTok, 3). (MW,MN) and 
(Num,Ord) denote the columns of the Month and DateOrd 
tables, respectively.

The expression f4 looks up the Id of the item (present in 
v1) from the MarkupRec table and f5 generates a substring 
of the date present in v2, which are then used together to 
lookup the Price of the item from the CostRec table (f1). 
The expression f6 looks up the Markup percentage of the 
item from the MarkupRec table and f2 generates a sub-
string of this lookup value by extracting the first numeric 
token (thus removing the % sign). Similarly, the expres-
sion f3 generates a substring of f1, removing the $ symbol. 
Finally, the top-level expression concatenates the strings 
obtained from expressions f1, f2, and f3 with constant strings 
“+0.” and “*”.

This extended language also enables manipulation of 
strings that represent standard data types, whose seman-
tic meaning can be encoded as a database of relational 
tables. For example, consider the following date manipu-
lation task.

Example 4 (Date Manipulation). An Excel user wanted 
to convert dates from one format to another, and the fixed set 
of hard-coded date formats supported by Excel 2010 do not 
match the input and output formats. Thus, the user solicited 
help on a forum.

input v1 output

6-3-2008 Jun 3rd, 2008
3-26-2010 Mar 26th, 2010
8-1-2009 Aug 1st, 2009
9-24-2007 Sep 24th, 2007

We can encode the required background knowledge for 
the date data type in two tables, namely a Month table 
with 12 entries: (1, January), …, (12, December) and a 
DateOrd table with 31 entries (1, st), (2, nd), …, (31, st). 
The desired transformation is represented in our lan-
guage as

4.2. Synthesis algorithm
We now describe the key extensions to the synthesis algo-
rithm for syntactic transformations (Section 3.2) to obtain 
the synthesis algorithm for semantic transformations.

data structure: Figure 3(b) describes the data structure that 
succinctly represents the large set of programs in the semantic 
transformation language that are consistent with a given input–
output example. The data structure consists of a generalized 
expression e~t, generalized Boolean condition g~, and general-
ized predicate h~ (which, respectively, denote a set of select expres-
sions, a set of Boolean conditions g, and a set of predicates h). 
The generalized expression e~t is represented using a tuple (h~, ht, 
Progs) where h~ denotes a set of nodes containing a distinct tar-
get node ht (representing the output string), and Progs : h~ ® 2f~ 
maps each node h Î h~ to a set consisting of input variables vi or 
generalized select expressions Select(Col, Tab, B). A general-
ized Boolean condition g~i corresponds to some primary key of 
table T and is a conjunction of generalized predicates h~j, where 
each h~j is an equality comparison of the jth column of the cor-
responding primary key with a constant string s or some node h~ 
or both. The two key aspects of this data structure are (i) the use 
of intermediate nodes for sharing sub-expressions to represent 
an exponential number of expressions in polynomial space and  
(ii) the use of Conjunctive Normal Form (CNF) form of Boolean 
conditions to represent an exponential number of conditionals 
g~ in polynomial space.

Procedure Generate: We first consider the simpler 
case where there are no syntactic manipulations on the 
table lookups and the lookups are performed using exact 
string matches, that is, the predicate h is Col = et instead 
of Col = e. The Generate procedure operates by iteratively 
computing a set of nodes (h~), where each node h Î h~ repre-
sents a string val(h) that corresponds to some table entry 
or an input string. Generate performs an iterative forward 
reachability analysis of the string values that can be gener-
ated in a single step (i.e., using a single Select expression) 
from the string values computed in the previous step based 
on string equality and assigns the Select expression to the 
Progs map of the corresponding node. The base case of the 
procedure creates a node for each of the input string vari-
ables. After performing the analysis for a bounded number 
of iterations, the procedure returns the set of select expres-
sions of the node that corresponds to the output string s, 
that is, Progs[val−1(s)].

The Generate procedure for the general case, which 
also includes syntactic manipulations on table lookups, 
requires a relaxation of the above-mentioned reachability 
criterion of strings that is based on string equality. We now 

atomic expr f := SubStr(et, p1, p2) | ConstStr(s) | et
~et := ( ~h, ht, Progs)  where progs : ~h→ 2f

~

select expr et := υi      |  Select(Col, Tab, g)
~f := υi |  Select(Col, Tab, b)

boolean condition g := h1 ∧ . . . ∧ hn b := {~gi} i

predicate h := Col = s    |  Col = e ~g := h~1 ∧ . . . ∧ h~n

h~ := Col = s  |  Col = η   |  Col = {s, η}
(a)  (b)

Figure 3. Extensions to the syntax and data structure in Figure 1 for semantic processing.

Concatenate(SubStr(Select(MW, Month, MN = e1),

Pos(StartTok, e, 1), CPos(3) ), ConstStr(“ ”), e2,

Select(Ord, DateOrd, Num = e2), ConstStr(“, ”), e3)
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define a table entry to be reachable from a set of previously 
reachable strings if the entry can be generated from the 
set of reachable strings using the Generate procedure of 
Section 3.2. The rest of the reachability algorithm operates 
just as before.

Procedure Intersect: A basic ingredient of the 
Intersect procedure for syntactic transformations is a 
method to intersect two Dag constructs, each representing a 
set of trace expressions. We replace this by a method to inter-
sect two tuples (h~1, ht

1, Progs1) and (h~2, ht
2, Progs2), each 

representing a set of extended trace expressions. The 
tuple after intersection is (h~1 ´ h~2, (ht

1,ht
2), Progs12), where 

Progs12( (h~1, h~2) ) is given by the intersection of Progs1(h~1) 
and Progs2(h~2).

ranking: We prefer expressions of smaller depth (fewer 
nested chains of Select expressions) and ones that match 
longer strings in table entries for indexing. We prefer lookup 
expressions that use distinct tables (for join queries) as 
opposed to using the same table twice. We prefer condition-
als with fewer predicates. We prefer predicates that com-
pare columns with other table entries or input variables (as 
opposed to comparing columns with constant strings).

We implemented our algorithm as an extension to the 
Excel add-in (Section 3.2) and evaluated it successfully over 
more than 50 benchmark problems obtained from various 
help forums and the Excel product team. For each bench-
mark, our implementation learned the desired transforma-
tion in <10 s (88% of them taking <1 s each) requiring at most 
three input–output examples (with 70% of them requiring 
only one example). The data structure had size between 100 
and 2,000 (measured as the number of terminal symbols in 
the data-structure syntax), with an average size of 600, and 
typically represented 1020 expressions.

5. tABLE LAyout tRAnSFoRMAtionS
End users often transform a spreadsheet table not by chang-
ing the data stored in the cells of a table, but instead by 
changing how the cells are grouped or arranged. In other 
words, users often transform the layout of a table.8

Example 5. The following example input table and subsequent 
example output table were provided by a novice on an Excel 
user help thread to specify a layout transformation:

 Qual 1 Qual 2  Qual 3

Andrew 01.02.2003 27.06.2008 06.04.2007
Ben 31.08.2001 05.07.2004
Carl 18.04.2003 09.12.2009

the test. For every date, the user needs to produce a row in the 
output table containing the name of the test taker, the name of 
the test, and the date on which the test was taken. If a date cell 
in the input is empty, then no corresponding row should be pro-
duced in the output.

5.1. Domain-specific language
We may view every program P that transforms the layout of 
a table as constructing a map mP from the cells of an input 
table to the coordinates of the output table. For a cell c in an 
input table, if mP(c) = (row, col), P fills the cell in the output 
table at the coordinate (row, col) with the data in c. A program 
in our language of layout transformations is defined syntac-
tically as a finite collection of component programs, each of 
which builds a map from input cells to output coordinates 
(Figure 4: table program). We designed our language on the 
principle that most layout transformations can be imple-
mented by a set of component programs that construct their 
map using one of the two complementary procedures: filter-
ing and associating.

When a component program filters, it scans the cells 
of the input table in row-major order, selects a sub-
set of the cells, and maps them in order to a subrange 
of the coordinates in the output table. A filter program 
Filter(j, SEQi,j,k) (Figure 4: filter program) is a mapping 
condition j, which is a function whose body is a conjunction 
of predicates over input cells drawn from a fixed set and an 
output sequencer SEQi,j,k, where i,  j, and k are nonnegative 
integers. For a mapping condition j and sequencer SEQi,j,k, 
the filter program Filter(j, SEQi,j,k) scans an input table 
and maps each cell that satisfies j to the coordinates in the 
output table between columns i and j, starting at row k, in 
row-major order.

For the tables in Example 5, the filter program F1 = 
Filter(λc.(c.data ≠ “” ∧ c.col ≠ 1 ∧ c.row ≠ 1), SEQ3,3,1) 
maps each date, that is, each nonempty cell not in column 1 
and not in row 1, to its corresponding cell in column 3 of the 
 output table, starting at row 1. Call this map mF1

.
A table program can also construct a map using spatial 

relationships between cells in the input table and spatial 
relationships between coordinates in the output table; we 
call this construction association. When a table program 
associates, it takes a cell c in the input table mapped by 
some filter program F, picks a cell c1 in the input table whose 
coordinate is related to c, finds the coordinate mF(c) that c 
maps to under mF, picks a coordinate d1 whose coordinate is 
related to mF(c), and maps c1 to d1.

An associative program A = Assoc(F, s0, s1) (Figure 4: 
Associative program) is constructed from a filter program 
F and two spatial functions s0 and s1, each of which may be of 

 table program P := TabProg({ki}i)

Component program k := f | a

 filter program f := Filter(ϕ, seQi, j, k)

associative program a := Assoc(f, s1, s2)

 spatial function s := RelColi  | RelRowj

Figure 4. Syntax of layout transformations.

Andrew Qual 1 01.02.2003
Andrew Qual 2 27.06.2008
Andrew Qual 3 06.04.2007
Ben Qual 1 31.08.2001
Ben Qual 3 05.07.2004
Carl Qual 2 18.04.2003
Carl Qual 3 09.12.2009

The example input contains a set of dates on which tests were 
given, where each date is in a row corresponding to the name 
of the test taker, and in a column corresponding to the name of 
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checks if the resulting associative program is consis-
tent. If so, then Generate adds the associative program 
to the set of consistent component programs. The table 
program TabProg(K*) stores all table programs that are 
consistent with the example if any exist, and is thus called 
the complete table program of the example.

Procedure Intersect: Given two sets of table programs 
represented as table programs stored in TabProg(K0) and 
TabProg(K1), Intersect efficiently constructs the inter-
section of the sets as all consistent table programs stored in 
TabProg(K0 ∩ K1).

The synthesis algorithm applies Generate to con-
struct the complete table program for each example, 
applies Intersect to the set of complete table programs, 
and checks if the resulting table program TabProg(KI) 
is consistent with each of the examples. If so, it returns 
TabProg(K′I  ) for some subset K′I   of KI that covers each of 
the examples. The exact choice of K′I   depends on the rank-
ing criteria.

ranking: We prefer table programs that are constructed 
from smaller sets of component programs, as such table 
programs are intuitively simpler. The subset order over sets 
of component programs thus serves as a partial order for 
ranking. Also, suppose that a table program P0 uses a filter 
program F0, while another table program P1 uses a filter pro-
gram F1 that builds the same map as F0, but whose condition 
is a conjunction of fewer predicates than the condition of F0. 
Then, we prefer P1, as the condition used by F1 is intuitively 
more general.

To evaluate our synthesis algorithm, we implemented it 
as a plug-in for the Excel spreadsheet program and applied it 
to input–output tasks taken directly from over 50 real-world 
Excel user help threads. The tool automatically inferred pro-
grams for each task. The tool usually ran in under 10 s and 
inferred a program that behaved as we expected, given the 
user’s description in English of their required transforma-
tion. If the highest-ranking program inferred by the tool 
behaved in an unexpected way on an input, it inferred a pro-
gram that behaved as expected after taking at most two addi-
tional examples.

6. RELAtED WoRk
The Human Computer Interaction (HCI) community 
has developed programming by demonstration (PBD) sys-
tems1 for data cleaning, which require the user to specify 
a complete demonstration or trace visually on the data 
instead of writing code: SMARTedit14 for text manipula-
tion, Simultaneous Editing16 for string manipulation, 
and Wrangler11 for table transformations. Our system is 
based on programming by example (as opposed to dem-
onstration); it requires the user to provide only the initial 
and final states, as opposed to also providing the inter-
mediate states. This renders our system more usable,13 
but at the expense of complicating the learning problem. 
Furthermore, we synthesize programs over a more sophis-
ticated language consisting of conditionals and loops.

The database community has studied the view syn-
thesis problem,2, 22 which aims to find a succinct query 
for a given relational view instance. Our semantic string 

the form RelColi or RelRowj. The spatial function RelColi 
takes a cell c as input, and returns the cell in the same row 
as c and in column i. The spatial function RelRowj takes a 
cell c as input, and returns the cell in row j and in the same 
column as c. For each cell c in the domain of mK, the map of 
A contains an entry mA(s0(c) ) = s1(mF(c) ).

For the example tables in Example 5, and the filter 
 program F1 introduced above that maps to column 3 of 
the example output table, the associative program A1 = 
Assoc(F1, RelCol1, RelCol1) constructs a map to every 
cell in column 1 of the output table. To construct its map, 
A1 takes each cell c in the input table mapped by F1, finds the  
cell RelCol1(c) in the same row as c and in column 1, finds 
the coordinate mF1

(c) that F1 maps c to, finds the coordinate 
RelCol1(mF1

(c)), and maps RelCol1(c) to RelCol1(mF1
(c)): that 

is, A1 sets mA1
(RelCol1(c) ) = RelCol1(mF1

(c)). Similarly,  
the associative program A2 = Assoc(F1, RelRow1, RelCol2) 
constructs a map to every cell in column 2 of the example 
output table. The table program TabProg({F1, A1, A2}) takes 
the input table in Example 5 and maps to every cell in the 
output table.

It is possible that the ranges of constituent component 
programs of a table program may overlap on a given input 
table. In such a case, if two cells with different values are 
mapped to the same output coordinate, then we say that the 
table program is undefined on the input table.

5.2. Synthesis algorithm
The synthesis algorithm generates the set of all table pro-
grams that are consistent with each example, intersects the 
sets, and picks a table program from the intersection that is 
consistent with all of the examples.

data structure for sets of table programs: To compactly 
represent sets of table programs, our synthesis algorithm 
uses a table program itself. Let a component program K be 
consistent with an input–output example if when K is applied 
to the example input and K maps an input cell c, then the 
cell in the output table at coordinate mK(c) has the same 
data as cell c in the input table. Let a set of component pro-
grams K cover an example if, for each cell coordinate d in the 
example output, there is some component K ∈ K and cell c 
in the input table such that d = mK(c). Let a table program 
TabProg(K) be consistent with an example if K is consis-
tent with the example and K covers the example. For a fixed 
input–output example, TabProg(K) stores TabProg(K′) if 
K′ Í K covers the example.

Procedure Generate: From a single input–output 
example, Generate constructs a table program that 
stores the set of all table programs that are consistent 
with the example by constructing the set K* of all consis-
tent component programs, in three steps. First, from the 
example input and output, Generate defines a set of spa-
tial functions and map predicates. Second, from the set of 
map predicates, Generate collects the set of all consis-
tent filter programs. Third, from the set of consistent fil-
ter programs, Generate constructs the set of consistent 
associative programs. To generate associative programs, 
Generate combines each consistent filter program with 
pairs of spatial functions defined in the first step and 
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transformation synthesis also infers similar queries, but 
infers from very few examples and over a richer language 
that combines lookup operations with syntactic manipula-
tions. Our table layout synthesis addresses the challenges 
of dealing with spreadsheet tables, which, unlike database 
relations, have ordering relationships between rows and 
carry meta- information in some cells.

The PADS project in the programming languages com-
munity has simplified ad hoc data-processing tasks for 
programmers by developing domain-specific languages 
for describing data formats, and learning algorithms for 
inferring such formats using annotations provided by 
the user.3 The learned format can then be used by pro-
grammers to implement custom data-analysis tools. In 
contrast, we focus on automating the entire end-to-end 
process for relatively simpler tasks, which include not only 
learning the text structure from the inputs, but also learn-
ing the desired transformation from the outputs, without 
any user annotations.

The area of program synthesis is gaining renewed inter-
est. However, it has traditionally focused on synthesizing 
nontrivial algorithms20 (e.g., graph algorithms9 and pro-
gram inverses19) and discovering intricate code-snippets 
(e.g., bit-vector tricks,7 switching logic in hybrid systems21). 
In this paper, we apply program synthesis to discover sim-
pler programs required by the much larger class of spread-
sheet end-users. Various classes of techniques have been 
explored for program synthesis: exhaustive search, logi-
cal reasoning, probabilistic inference, and version-space 
algebras (for a recent survey, see Gulwani5). Because the 
data manipulations required by end users are usually rela-
tively simple, we can apply version-space algebras, which 
allow real-time performance, unlike other techniques. 
Version-space algebras were pioneered by Mitchell for 
refinement-based learning of Boolean functions,17 while 
Lau et al. extended the concept to learning more complex 
functions in a PBD setting.14 Our synthesis algorithms lift 
the concepts of version-space algebra to the PBE setting, 
for a fairly expressive string expression language involving 
conditionals and loops.

7. ConCLuSion AnD FutuRE WoRk
General-purpose computational devices, such as smart-
phones and computers, are becoming accessible to people 
at large at an impressive rate. In the future, even robots 
will become household commodities. Unfortunately, pro-
gramming such general-purpose platforms has never been 
easy, because we are still mostly stuck with the model of 
providing step-by-step, detailed, and syntactically correct 
instructions on how to accomplish a certain task, instead 
of simply describing what the task is. Program synthesis 
has the potential to revolutionize this landscape, when 
targeted for the right set of problems and using the right 
interaction model.

This paper reports our initial experience with design-
ing domain-specific languages and inductive synthe-
sizers for string and table transformations. Our choice 
of domains was motivated by our study of help-forum 
problems that end users struggled with. A next step is to 
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develop a general framework that can allow synthesizer 
writers to easily develop domain-specific synthesizers of 
the kind described in this paper, similar to how declara-
tive parsing frameworks allow a compiler writer to easily 
write a parser.
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