
AuguST 2012 | vol. 55 | no. 8 | CoMMuniCAtionS oF thE ACM 97

Doi:10.1145/2240236.2240260

Spreadsheet Data Manipulation
Using Examples
By Sumit Gulwani, William R. Harris, and Rishabh Singh

Abstract
Millions of computer end users need to perform tasks over
large spreadsheet data, yet lack the programming knowl-
edge to do such tasks automatically. We present a program-
ming by example methodology that allows end users to
automate such repetitive tasks. Our methodology involves
designing a domain-specific language and developing a
synthesis algorithm that can learn programs in that lan-
guage from user-provided examples. We present instantia-
tions of this methodology for particular domains of tasks:
(a) syntactic transformations of strings using restricted
forms of regular expressions, conditionals, and loops, (b)
semantic transformations of strings involving lookup in
relational tables, and (c) layout transformations on spread-
sheet tables. We have implemented this technology as an
add-in for the Microsoft Excel Spreadsheet system and have
evaluated it successfully over several benchmarks picked
from various Excel help forums.

1. intRoDuCtion
The IT revolution over the past few decades has resulted
in two significant advances: the digitization of massive
amounts of data and widespread access to computational
devices. It is thus not surprising that more than 500 million
people worldwide use spreadsheets for storing and manip-
ulating data. These business end users have myriad diverse
backgrounds and include commodity traders, graphic
designers, chemists, human resource managers, finance
professionals, marketing managers, underwriters, compli-
ance officers, and even mailroom clerks—they are not pro-
fessional programmers, but they need to create small, often
one-off, applications to perform business tasks.4

Unfortunately, the state of the art of interfacing with
spreadsheets is far from satisfactory. Spreadsheet systems,
like Microsoft Excel, come with a maze of features, but
end users struggle to find the correct features to accom-
plish their tasks.12 More significantly, programming is still
required to perform tedious and repetitive tasks such as
transforming names or phone numbers or dates from one
format to another, cleaning data, or extracting data from
several text files or Web pages into a single document. Excel
allows users to write macros using a rich inbuilt library of
string and numerical functions, or to write arbitrary scripts
in Visual Basic or .Net programming languages. However,
since end users are not proficient in programming, they find
it too difficult to write desired macros or scripts. Moreover,

even skilled programmers might hesitate to write a script for
a one-off repetitive task.

We performed an extensive case study of spreadsheet
help forums and observed that string and table process-
ing is a very common class of programming problems
that end users struggle with. This is not surprising given
that various languages such as Perl, Awk, and Python were
designed to support string processing, and that new lan-
guages such as Java and C# provide rich support for string
processing. During our study, we also observed how novice
users specified their desired programs to expert users: most
specifications consisted solely of one or more input–output
examples. Since input–output examples may underspecify
a program, the interaction between a novice and an expert
often involved multiple rounds of communication over
multiple days. Inspired by this observation, we developed a
programming by example (PBE), or inductive synthesis, meth-
odology15 that has produced synthesizers that can automati-
cally generate a wide range of string/table manipulating
programs in spreadsheets from input–output examples.
Each synthesizer takes the role of the forum expert, remov-
ing a human from the interaction loop and enabling users
to solve their problems in a few seconds instead of few days.

This paper is organized as follows. We start with a brief
overview of our PBE methodology (Section 2). We then
describe an application of this methodology to perform syn-
tactic string manipulation tasks (Section 3).6 This is followed
by an extension that automates more sophisticated seman-
tic string manipulations requiring background knowledge,
which can often be encoded as relational tables (Section 4).18
We also describe an application of this methodology to
perform layout transformations on tables (Section 5).8 In
Section 6, we discuss related work, and in Section 7, we con-
clude and discuss future work.

2. oVERViEW
In this section, we outline a general methodology that we
have used for developing inductive synthesizers for end-user
programming tasks, along with how a user can interact with
the synthesizers. In the first step of our methodology, we
identify a domain of useful tasks that end users struggle with

This paper is based on “Automating String Processing
in Spreadsheets using Input-Output,” S. Gulwani, pub-
lished in POPL (2011); “Learning Semantic String Trans-
formations from Examples,” R. Singh and S. Gulwani,
PVLDB 5 (2012), in press; and “Spreadsheet Table Trans-
formations from Examples,” W.R. Harris and S. Gulwani,
published in PLDI (2011).Harris’s work was done during an internship at Microsoft Research.

Singh’s work was done during two internships at Microsoft Research.

98 communications of the acm | august 2012 | vol. 55 | no. 8

research highlights

and can clearly describe with examples, by studying help
forums or performing user studies (this paper presents two
domains: string manipulation and table manipulation). We
then develop the following.

Domain-specific language: We design a domain-specific
language L that is expressive enough to capture several real-
world tasks in the domain, but also restricted enough to
enable efficient learning from examples.

Data structure for representing consistent programs: The
number of programs in L that are consistent with a given set
of input–output examples can be huge. We define a data
structure D based on a version-space algebra14 to succinctly
represent a large set of such programs.

Algorithm for synthesizing consistent programs: Our
synthesis algorithm for language L applies two key proce-
dures: (i) Generate learns the set of all programs, repre-
sented using data structure D, that are consistent with a
given single example. (ii) Intersect intersects these sets
(each corresponding to a different example).

Ranking: We develop a scheme that ranks programs,
preferring programs that are more general. Each ranking
scheme is inspired by Occam’s razor, which states that a
smaller and simpler explanation is usually the correct one.
We define a partial order relationship between programs to
compare them. Any partial order can be used that efficiently
orders programs represented in the version-space algebra
used by the data structure D. Such an order can be applied to
efficiently select the top-ranked programs from among a set
represented using D. The ranking scheme can also take into
account any test inputs provided by the user (i.e., new addi-
tional inputs on which the user may execute a synthesized
program). A program that is undefined on any test input or
generates an output whose characteristics are different from
that of training outputs can be ranked lower.

2.1. interaction models
A user provides to the synthesizer a small number of exam-
ples, and then can interact with the synthesizer according to
multiple models. In one model, the user runs the top-ranked
synthesized program on other inputs in the spreadsheet and
checks the outputs produced by the program. If any output
is incorrect, the user can fix it and reapply the synthesizer,
using the fix as an additional example. However, requiring
the user to check the results of the synthesized program,
especially on a large spreadsheet, can be cumbersome. To
enable easier interaction, the synthesizer can run all syn-
thesized programs on each new input to generate a set of
corresponding outputs for that input. The synthesizer can
highlight for the user the inputs that cause multiple distinct
outputs. Our prototypes, implemented as Excel add-ins,
support this interaction model.

A second model accommodates a user who requires a
reusable program. In this model, the synthesizer presents
the set of consistent programs to the user. The synthesizer
can show the top k programs or walk the user through the
data structure that succinctly represents all consistent
programs and let the user select a program. The programs
can be shown using programming-language syntax, or they
can be described in a natural language. The differences

between different programs can be explained by synthesiz-
ing a distinguishing input on which the programs behave
 differently.10 The user can reapply the synthesizer with the
distinguishing input and its desired output as an addi-
tional example.

3. sYntactic tRansfoRmations
Spreadsheet users often struggle with reformatting or clean-
ing data in spreadsheet columns. For example, consider the
following task.

Example 1 (Phone Numbers). An Excel user wants to uni-
formly format the phone numbers in the input column, adding a
default area code of “425” if the area code is missing.

input v1 output

323-708-7700 323-708-7700
(425)-706-7709 425-706-7709
510.220.5586 510-220-5586
235 7654 425-235-7654
745-8139 425-745-8139

Such tasks can be automated by applying a program that
performs syntactic string transformations. We now present
an expressive domain-specific language of string-processing
programs that supports limited conditionals and loops, syn-
tactic string operations such as substring and concatenate,
and matching based on regular expressions.6

3.1. Domain-specific language
Our domain-specific programming language for perform-
ing syntactic string transformations is given in Figure 1(a). A
string program P is an expression that maps an input state s,
which holds values for m string variables v1, … , vm (denoting
the multiple input columns in a spreadsheet), to an output
string s. The top-level string expression P is a Switch con-
structor whose arguments are pairs of Boolean expressions
b and trace expressions e. The set of Boolean expressions in
a Switch construct must be disjoint, that is, for any input
state, at most one of the Boolean expressions can be true.
The value of P in a given input state s is the value of the trace
expression that corresponds to the Boolean expression satis-
fied by s. A Boolean expression b is a propositional formula
in Disjunctive Normal Form (DNF). A predicate Match(vi, r, k)
is satisfied if and only if vi contains at least k nonoverlapping
matches of regular expression r. (In general, any finite set of
predicates can be used.)

A trace expression Concatenate(f1, … , fn) is the con-
catenation of strings represented by atomic expressions f1,
… , fn. An atomic expression f is either a constant-string
expression ConstStr, a substring expression con-
structed from SubStr, or a loop expression constructed
from Loop.

The substring expression SubStr(vi, p1, p2) is defined
partly by two position expressions p1 and p2, each of which
implicitly refers to the (subject) string vi and must eval-
uate to a position within the string vi. (A string with 
characters has  + 1 positions, numbered from 0 to 
starting from left.) SubStr(vi, p1, p2) is the substring of
string vi in between positions p1 and p2. For a nonnegative

august 2012 | vol. 55 | no. 8 | communications of the acm 99

constant k, CPos(k) denotes the kth position in the sub-
ject string. For a negative constant k, CPos(k) denotes
the ( + 1 + k)th position in the subject string, where
 = Length(s). Pos(r1,r2,c) is another position expres-
sion, where r1 and r2 are regular expressions and integer
expression c evaluates to a nonzero integer. Pos(r1,r2,c)
evaluates to a position t in the subject string s such that
r1 matches some suffix of s[0:t], and r2 matches some
prefix of s[t:], where  = Length(s). Furthermore, if c is
positive (negative), then t is the |c|th such match starting
from the left side (right side). We use the expression
s[t1:t2] to denote the substring of s between positions t1 and t2.
The substring construct is quite expressive. For example,
in the expression SubStr(vi, Pos(r1,r2,c), Pos(r3,r4,c)),
r2 and r3 describe the characteristics of the substring in
vi to be extracted, while r1 and r4 describe the character-
istics of the surrounding delimiters. We use the expres-
sion SubStr2(vi, r, c) as an abbreviation to denote
the cth occurrence of regular expression r in vi, that is,
SubStr(vi, Pos(e, r, c), Pos(r, e, c)).

A regular expression r is e (which matches the empty
string, and therefore can match at any position of any
string), a token t, or a token sequence TokenSeq(t1, …, tn).
This restricted choice of regular expressions enables
 efficient enumeration of regular expressions that match
certain parts of a string. We use the following finite (but eas-
ily extended) set of tokens: (a) StartTok, which matches
the beginning of a string, (b) EndTok, which matches the
end of a string, (c) a token for each special character, such
as hyphen, dot, semicolon, comma, slash, or left/right
parenthesis/bracket, and (d) two tokens for each character
class C, one that matches a sequence of one or more char-
acters in C, and another that matches a sequence of one or
more characters that are not in C. Examples of a character
class C include numeric digits (0–9), alphabetic characters
(a–zA–Z), lowercase alphabetic characters (a–z), upper-
case alphabetic characters (A–Z), alphanumeric charac-
ters, and whitespace characters. UpperTok, NumTok, and
AlphNumTok match a nonempty sequence of uppercase
alphabetic characters, numeric digits, and alphanumeric
characters, respectively. DecNumTok matches a non-
empty sequence of numeric digits and/or decimal point.
HyphenTok and SlashTok match the hyphen character
and the slash character, respectively.

The task described in Example 1 can be expressed in our
domain-specific language as

Switch((b
1
, e

1
), (b

2
, e

2
)), where

b1 º Match(v1, NumTok, 3)
b2 º ¬Match(v1, NumTok, 3)
e1 º Concatenate(SubStr2(v1, NumTok, 1), ConstStr(“−”),

SubStr2(v1, NumTok, 2), ConstStr(“−”),
SubStr2(v1, NumTok, 3))

e2 º Concatenate(ConstStr(“425–”), SubStr2(v1, Num Tok, 1),
ConstStr(“−”), SubStr2(v1, NumTok, 2))

The atomic expression Loop(λw : e) is the concatenation
of e1, e2, …, en, where ei is obtained from e by replacing all
occurrences of integer w by i, and n is the smallest integer
such that evaluation of en+1 is undefined. (It is also possible
to define more interesting termination conditions, e.g.,
based on position expressions or predicates.) A trace expres-
sion e is undefined when (i) a constituent CPos(k) expres-
sion refers to a position not within its subject string, (ii) a
constituent Pos(r1, r2, c) expression is such that the subject
string does not contain c occurrences of a match bounded
by r1 and r2, or (iii) a constituent SubStr(vi, p1, p2) expres-
sion has position expressions that are both defined but
the first refers to a position that occurs later in the subject
string than the position indicated by the second. The fol-
lowing example illustrates the utility of the loop construct.

Example 2 (Generate Abbreviation). The following task
was presented originally as an Advanced Text Formula.23

input v1 output

association of Computing Machinery aCM
Principles Of Programming Languages PoPL
Foundations of software Engineering fse

This task can be expressed in our language as

Loop(λw : Concatenate(SubStr2(v1, UpperTok, w))).

Our tool synthesizes this program from the first example
row and uses it to produce the entries in the second and
third rows (shown here in boldface for emphasis) of the
output column.

figure 1. (a) syntax of syntactic string-processing programs. (b) Data structure for representing a set of such programs.

String program P := Switch ((b1, e1), . . . , (bn, en)) | e ~P := Switch((b1,
~e1), . . . , (bn,

~en))

Boolean condition b := d1 ∨ . . . ∨ dn
~e := Dag(~h‚ hs‚ ht, ~ξ, W),

Conjunction d := π1 ∧ . . . ∧ πn where W :~  ξ → 2f
~

Predicate π := Match(υi, r, k) | ¬ Match(υi, r, k) f~ := ConstStr(s)

Trace expr e := Concatenate(f1, . . . , fn) | f | SubStr(υi, {
~pj}j , {

~pk}k)

Atomic expr f := ConstStr(s) | SubStr(υi, p1, p2) | loop(λw : e) | Loop (λw : e~)

Position p := CPos(k) | Pos(r1, r2, c) ~p := CPos(k)

Integer expr c := k | k1w + k2 | Pos(~r1,
~r2,

~c)

Regular expr r := TokenSeq(T1, . . . , Tn) | T | ε

(a) (b)

100 CoMMuniCAtionS oF thE ACM | AuguST 2012 | vOL. 55 | NO. 8

research highlights

3.2. Synthesis algorithm
The synthesis algorithm first computes, for each input–out-
put example (s, s), the set of all trace expressions that map
input s to output s (using procedure Generate). It then inter-
sects these sets for similar examples and learns conditionals
to handle different cases (using procedure Intersect). The
size of such sets can be huge; therefore, we must develop a
data structure that allows us to succinctly represent and effi-
ciently manipulate huge sets of program expressions.

data structure: Figure 1(b) describes our data structure for
succinctly representing sets of programs from our domain-
specific language. P

~
, e~, f~, and p~ denote representations of,

respectively, a set of string programs, a set of trace expres-
sions, a set of atomic expressions, and a set of position expres-
sions. r~ and c~ represent a set of regular expressions and a set
of integer expressions; these sets are represented explicitly.

The Concatenate constructor used in our string language
is generalized to the Dag constructor Dag(h~, hs, ht, x~, W), where
h~ is a set of nodes containing two distinctly marked source
and target nodes hs and ht, x~ is a set of edges over nodes in h~ that
defines a Directed Acyclic Graph (DAG), and W maps each x Î x~

to a set of atomic expressions. The set of all Concatenate
expressions represented by a Dag(h~, hs, ht, x~, W) constructor
includes exactly those whose ordered arguments belong to the
corresponding edges on any path from hs to ht. The Switch,
Loop, SubStr, and Pos constructors are all overloaded to
construct sets of the corresponding program expressions that
are shown in Figure 1(a). The ConstStr and CPos construc-
tors can be regarded as producing singleton sets.

The data structure supports efficient implementation of
various useful operations including intersection, enumera-
tion of programs, and their simultaneous execution on a
given input. The most interesting of these is the intersection
operation, which is similar to regular automata intersection.
The additional challenge is to intersect edge labels—in the
case of automata, the labels are simply sets of characters,
while in our case, the labels are sets of string expressions.

Procedure Generate: The number of trace expressions
that can generate a given output string from a given input
state can be huge. For example, consider the second input–
output pair in Example 1, where the input state consists
of one string “(425)-706-7709” and the output string is
“425-706-7709”. Figure 2 shows a small sampling of differ-
ent ways of generating parts of the output string from the
input string using SubStr and ConstStr constructors.
Each substring extraction task itself can be expressed with
a huge number of expressions, as explained later. The fol-
lowing are three of the trace expressions represented in the
figure, of which only the second one, shown in the figure in
bold, expresses the program expected by the user:

1. Extract substring “425”. Extract substring “-706-7709”.
2. Extract substring “425”. Print constant “-”. Extract sub-

string “706”. Print constant “-”. Extract substring “7709”.
3. Extract substring “425”. Extract substring “-706”. Print

constant “-”. Extract substring “7709”.

We apply two crucial observations to succinctly generate
and represent all such trace expressions. First, the logic for

generating some substring of an output string is completely
decoupled from the logic for generating another disjoint
substring of the output string. Second, the total number of
different substrings/parts of a string is quadratic (and not
exponential) in the size of that string.

The Generate procedure creates a Directed Acyclic Graph
(DAG) Dag(h~, hs, ht, x~, W) that represents the trace set of all trace
expressions that generate a given output string from a given
input state. Generate constructs a node corresponding to
each position within the output string and constructs an edge
from a node corresponding to any position to a node corre-
sponding to any later position. Each edge corresponds to some
substring of the output and is annotated with the set of all
atomic expressions that generate that substring. We describe
below how to generate the set of all such SubStr expressions.
Any Loop expressions are generated by first generating candi-
date expressions (by unifying the sets of trace expressions asso-
ciated with the substrings s[k1 : k2] and s[k2 : k3], where k1, k2, and k3
are the boundaries of the first two loop iterations, identified by
considering all possibilities), and then validating them.

The number of substring expressions that can extract a
given substring from a given string can be huge. For exam-
ple, following is a small sample of various expressions that
extract “706” from the string “425-706-7709” (call it v1).

•	 Second number: SubStr2(v1, NumTok, 2).
•	 2nd last alphanumeric token:
SubStr2(v1, AlphNum Tok, −2).

•	 Substring between the first hyphen and the last hyphen:
SubStr(v1, Pos(HyphenTok, e, 1), Pos(e, HyphenTok, −1)).

•	 First number that occurs between hyphen on both ends.
SubStr(v1, Pos(HyphenTok,

TokenSeq(NumTok, HyphenTok), 1),
Pos(TokenSeq(HyphenTok, NumTok),

HyphenTok, 1)).
•	 First number preceded by a number–hyphen sequence.
SubStr(v1, Pos(TokenSeq(NumTok, HyphenTok),

NumTok, 1),
Pos(TokenSeq(NumTok, HyphenTok,

NumTok), e, 1)).

Figure 2. Small sampling of different ways of generating parts of an
output string from the input string.

425 – 706 – 7709

(425)– 706 – 7709

ConstantConstant Constant

Constant

Input

Output

AuguST 2012 | vol. 55 | no. 8 | CoMMuniCAtionS oF thE ACM 101

The substring-extraction problem can be decomposed into
two independent position-identification problems, each of
which can be solved independently. The solutions to the
substring-extraction problem can also be maintained suc-
cinctly by independently representing the solutions to the
two position-identification problems. Note the representa-
tion of the SubStr constructor in Eq. 1 in Figure 1(b).

Procedure Intersect: Given a trace set for each
input–output example, the Intersect procedure gener-
ates the top-level Switch constructor. Intersect first
partitions the examples, so that inputs in the same parti-
tion are handled by the same conditional in the top-level
Switch expression, and then intersects the trace sets for
inputs in the same partition. If a set of inputs are in the
same partition, then the intersection of trace sets is non-
empty. Intersect uses a greedy heuristic to minimize the
number of partitions by starting with singleton partitions
and then iteratively merging partitions that have the high-
est compatibility score, which is a function of the size of the
resulting partition and its potential to be merged with other
partitions.

Intersect then constructs a classifier for each of the
resultant partitions, which is a Boolean expression that is
satisfied by exactly the inputs in the partition. The classifier
for each partition and the intersection of trace sets for the
inputs in the partition serve as the Boolean condition and
corresponding trace expression in the constructed Switch
expression, respectively.

ranking: We prefer Concatenate and TokenSeq
expressions that have fewer arguments. We prefer SubStr
expressions to both ConstStr expressions (it is less
likely for constant parts of an output string to also occur
in the input) and Concatenate expressions (if there is
a long substring match between the input and output, it
is more likely that the corresponding part of the output
was produced by a single substring extraction). We prefer
a Pos expression to CPos expression (giving less prefer-
ence to extraction expressions based on constant offsets).
StartTok and EndTok are our most preferred tokens;
otherwise, we prefer tokens corresponding to a larger char-
acter class (favoring generality).

The implementation of the synthesis algorithm is less
than 5,000 lines of C# code, and takes less than 0.1 s on aver-
age for a benchmark suite of more than 100 tasks obtained
from online help forums and the Excel product team.

4. SEMAntiC tRAnSFoRMAtionS
Some string transformation tasks also involve manipulating
strings that need to be interpreted as more than a sequence
of characters, for example, as a column entry from some
relational table, or as some standard data type such as date,
time, currency, or phone number. For example, consider the
following task from an Excel help forum.

Example 3. A shopkeeper wants to compute the selling
price of an item (Output) from its name (Input v1) and sell-
ing date (Input v2). The inventory database of the shop con-
sists of two tables: (i) MarkupRec table that stores id, name
and markup percentage of items, and (ii) CostRec table

MarkupRec

id name Markup

S33 Stroller 30%
B56 Bib 45%
d32 diapers 35%
W98 Wipes 40%
A46 Aspirator 30%
.

CostRec

id Date Price
S33 12/2010 $145.67
S33 11/2010 $142.38
B56 12/2010 $3.56
d32 1/2011 $21.45
W98 4/2009 $5.12
A46 2/2010 $2.56
.

that stores id, purchase date (in month/year format), and
purchase price of items. The selling price of an item is
computed by adding its purchase price (for the corresponding
month) to its markup charges, which in turn is calculated by
multiplying the markup percentage by the purchase price.

input v1 input v2 output

Stroller 10/12/2010 $145.67 + 0.30*145.67
Bib 23/12/2010 $3.56 + 0.45*3.56
diapers 21/1/2011 $21.45 + 0.35*21.45
Wipes 2/4/2009 $5.12 + 0.40*5.12
Aspirator 23/2/2010 $2.56 + 0.30*2.56

To perform the above task, the user must perform a join of
the two tables on the common item Id column to lookup the
item Price from its Name (v1) and selling Date (substring
of v2). We present an extension to the trace expression
(from Section 3.1) that can also manipulate strings present
in such relational tables.18

4.1. Domain-specific language
We extend the trace expression (from Section 3.1), as shown
in Figure 3(a), to obtain the semantic string transformation
language that can also perform table lookup operations.
The atomic expression f is modified to represent a constant
string, a select expression, or a substring of a select expres-
sion. A select expression et is either an input string variable
vi or a lookup expression denoted by Select(Col, Tab, g),
where Tab is a relational table identifier and Col is a col-
umn identifier of the table. The Boolean condition g is an
ordered conjunction of column predicates h1∧…∧hn, where
a column predicate h is an equality comparison between
the content of some column of the table and a constant or
a trace expression e. We require columns present in these
conditions to together constitute a primary key of the table
to ensure that the select queries produce a single string as
opposed to a set of strings.

The task in Example 3 can be represented in the lan-
guage as

Concatenate (f1, ConstStr(“+0.”), f2, ConstStr(“*”), f3)
where f1 ≡ Select(Price, CostRec, Id = f4 ∧ Date = f5),
f4 ≡ Select(Id, MarkupRec, Name = v1),
f5 ≡ SubStr(v2, Pos(SlashTok, e, 1), Pos(e, EndTok, 1)),
f2 ≡ SubStr2(f6, NumTok, 1), f3 ≡ SubStr2(f1, DecNum Tok, 1),
f6 ≡ Select(Markup, MarkupRec, Name = v1).

102 CoMMuniCAtionS oF thE ACM | AuguST 2012 | vOL. 55 | NO. 8

research highlights

where e1 = SubStr2(v1, NumTok, 1), e2 = SubStr2(v1,
NumTok, 2), e3 = SubStr2(v1, NumTok, 3). (MW,MN) and
(Num,Ord) denote the columns of the Month and DateOrd
tables, respectively.

The expression f4 looks up the Id of the item (present in
v1) from the MarkupRec table and f5 generates a substring
of the date present in v2, which are then used together to
lookup the Price of the item from the CostRec table (f1).
The expression f6 looks up the Markup percentage of the
item from the MarkupRec table and f2 generates a sub-
string of this lookup value by extracting the first numeric
token (thus removing the % sign). Similarly, the expres-
sion f3 generates a substring of f1, removing the $ symbol.
Finally, the top-level expression concatenates the strings
obtained from expressions f1, f2, and f3 with constant strings
“+0.” and “*”.

This extended language also enables manipulation of
strings that represent standard data types, whose seman-
tic meaning can be encoded as a database of relational
tables. For example, consider the following date manipu-
lation task.

Example 4 (Date Manipulation). An Excel user wanted
to convert dates from one format to another, and the fixed set
of hard-coded date formats supported by Excel 2010 do not
match the input and output formats. Thus, the user solicited
help on a forum.

input v1 output

6-3-2008 Jun 3rd, 2008
3-26-2010 Mar 26th, 2010
8-1-2009 Aug 1st, 2009
9-24-2007 Sep 24th, 2007

We can encode the required background knowledge for
the date data type in two tables, namely a Month table
with 12 entries: (1, January), …, (12, December) and a
DateOrd table with 31 entries (1, st), (2, nd), …, (31, st).
The desired transformation is represented in our lan-
guage as

4.2. Synthesis algorithm
We now describe the key extensions to the synthesis algo-
rithm for syntactic transformations (Section 3.2) to obtain
the synthesis algorithm for semantic transformations.

data structure: Figure 3(b) describes the data structure that
succinctly represents the large set of programs in the semantic
transformation language that are consistent with a given input–
output example. The data structure consists of a generalized
expression e~t, generalized Boolean condition g~, and general-
ized predicate h~ (which, respectively, denote a set of select expres-
sions, a set of Boolean conditions g, and a set of predicates h).
The generalized expression e~t is represented using a tuple (h~, ht,
Progs) where h~ denotes a set of nodes containing a distinct tar-
get node ht (representing the output string), and Progs : h~ ® 2f~
maps each node h Î h~ to a set consisting of input variables vi or
generalized select expressions Select(Col, Tab, B). A general-
ized Boolean condition g~i corresponds to some primary key of
table T and is a conjunction of generalized predicates h~j, where
each h~j is an equality comparison of the jth column of the cor-
responding primary key with a constant string s or some node h~
or both. The two key aspects of this data structure are (i) the use
of intermediate nodes for sharing sub-expressions to represent
an exponential number of expressions in polynomial space and
(ii) the use of Conjunctive Normal Form (CNF) form of Boolean
conditions to represent an exponential number of conditionals
g~ in polynomial space.

Procedure Generate: We first consider the simpler
case where there are no syntactic manipulations on the
table lookups and the lookups are performed using exact
string matches, that is, the predicate h is Col = et instead
of Col = e. The Generate procedure operates by iteratively
computing a set of nodes (h~), where each node h Î h~ repre-
sents a string val(h) that corresponds to some table entry
or an input string. Generate performs an iterative forward
reachability analysis of the string values that can be gener-
ated in a single step (i.e., using a single Select expression)
from the string values computed in the previous step based
on string equality and assigns the Select expression to the
Progs map of the corresponding node. The base case of the
procedure creates a node for each of the input string vari-
ables. After performing the analysis for a bounded number
of iterations, the procedure returns the set of select expres-
sions of the node that corresponds to the output string s,
that is, Progs[val−1(s)].

The Generate procedure for the general case, which
also includes syntactic manipulations on table lookups,
requires a relaxation of the above-mentioned reachability
criterion of strings that is based on string equality. We now

atomic expr f := SubStr(et, p1, p2) | ConstStr(s) | et
~et := (~h, ht, Progs) where progs : ~h→ 2f

~

select expr et := υi | Select(Col, Tab, g)
~f := υi | Select(Col, Tab, b)

boolean condition g := h1 ∧ . . . ∧ hn b := {~gi} i

predicate h := Col = s | Col = e ~g := h~1 ∧ . . . ∧ h~n

h~ := Col = s | Col = η | Col = {s, η}
(a) (b)

Figure 3. Extensions to the syntax and data structure in Figure 1 for semantic processing.

Concatenate(SubStr(Select(MW, Month, MN = e1),

Pos(StartTok, e, 1), CPos(3)), ConstStr(“ ”), e2,

Select(Ord, DateOrd, Num = e2), ConstStr(“, ”), e3)

AuguST 2012 | vol. 55 | no. 8 | CoMMuniCAtionS oF thE ACM 103

define a table entry to be reachable from a set of previously
reachable strings if the entry can be generated from the
set of reachable strings using the Generate procedure of
Section 3.2. The rest of the reachability algorithm operates
just as before.

Procedure Intersect: A basic ingredient of the
Intersect procedure for syntactic transformations is a
method to intersect two Dag constructs, each representing a
set of trace expressions. We replace this by a method to inter-
sect two tuples (h~1, ht

1, Progs1) and (h~2, ht
2, Progs2), each

representing a set of extended trace expressions. The
tuple after intersection is (h~1 ´ h~2, (ht

1,ht
2), Progs12), where

Progs12((h~1, h~2)) is given by the intersection of Progs1(h~1)
and Progs2(h~2).

ranking: We prefer expressions of smaller depth (fewer
nested chains of Select expressions) and ones that match
longer strings in table entries for indexing. We prefer lookup
expressions that use distinct tables (for join queries) as
opposed to using the same table twice. We prefer condition-
als with fewer predicates. We prefer predicates that com-
pare columns with other table entries or input variables (as
opposed to comparing columns with constant strings).

We implemented our algorithm as an extension to the
Excel add-in (Section 3.2) and evaluated it successfully over
more than 50 benchmark problems obtained from various
help forums and the Excel product team. For each bench-
mark, our implementation learned the desired transforma-
tion in <10 s (88% of them taking <1 s each) requiring at most
three input–output examples (with 70% of them requiring
only one example). The data structure had size between 100
and 2,000 (measured as the number of terminal symbols in
the data-structure syntax), with an average size of 600, and
typically represented 1020 expressions.

5. tABLE LAyout tRAnSFoRMAtionS
End users often transform a spreadsheet table not by chang-
ing the data stored in the cells of a table, but instead by
changing how the cells are grouped or arranged. In other
words, users often transform the layout of a table.8

Example 5. The following example input table and subsequent
example output table were provided by a novice on an Excel
user help thread to specify a layout transformation:

 Qual 1 Qual 2 Qual 3

Andrew 01.02.2003 27.06.2008 06.04.2007
Ben 31.08.2001 05.07.2004
Carl 18.04.2003 09.12.2009

the test. For every date, the user needs to produce a row in the
output table containing the name of the test taker, the name of
the test, and the date on which the test was taken. If a date cell
in the input is empty, then no corresponding row should be pro-
duced in the output.

5.1. Domain-specific language
We may view every program P that transforms the layout of
a table as constructing a map mP from the cells of an input
table to the coordinates of the output table. For a cell c in an
input table, if mP(c) = (row, col), P fills the cell in the output
table at the coordinate (row, col) with the data in c. A program
in our language of layout transformations is defined syntac-
tically as a finite collection of component programs, each of
which builds a map from input cells to output coordinates
(Figure 4: table program). We designed our language on the
principle that most layout transformations can be imple-
mented by a set of component programs that construct their
map using one of the two complementary procedures: filter-
ing and associating.

When a component program filters, it scans the cells
of the input table in row-major order, selects a sub-
set of the cells, and maps them in order to a subrange
of the coordinates in the output table. A filter program
Filter(j, SEQi,j,k) (Figure 4: filter program) is a mapping
condition j, which is a function whose body is a conjunction
of predicates over input cells drawn from a fixed set and an
output sequencer SEQi,j,k, where i, j, and k are nonnegative
integers. For a mapping condition j and sequencer SEQi,j,k,
the filter program Filter(j, SEQi,j,k) scans an input table
and maps each cell that satisfies j to the coordinates in the
output table between columns i and j, starting at row k, in
row-major order.

For the tables in Example 5, the filter program F1 =
Filter(λc.(c.data ≠ “” ∧ c.col ≠ 1 ∧ c.row ≠ 1), SEQ3,3,1)
maps each date, that is, each nonempty cell not in column 1
and not in row 1, to its corresponding cell in column 3 of the
 output table, starting at row 1. Call this map mF1

.
A table program can also construct a map using spatial

relationships between cells in the input table and spatial
relationships between coordinates in the output table; we
call this construction association. When a table program
associates, it takes a cell c in the input table mapped by
some filter program F, picks a cell c1 in the input table whose
coordinate is related to c, finds the coordinate mF(c) that c
maps to under mF, picks a coordinate d1 whose coordinate is
related to mF(c), and maps c1 to d1.

An associative program A = Assoc(F, s0, s1) (Figure 4:
Associative program) is constructed from a filter program
F and two spatial functions s0 and s1, each of which may be of

 table program P := TabProg({ki}i)

Component program k := f | a

 filter program f := Filter(ϕ, seQi, j, k)

associative program a := Assoc(f, s1, s2)

 spatial function s := RelColi | RelRowj

Figure 4. Syntax of layout transformations.

Andrew Qual 1 01.02.2003
Andrew Qual 2 27.06.2008
Andrew Qual 3 06.04.2007
Ben Qual 1 31.08.2001
Ben Qual 3 05.07.2004
Carl Qual 2 18.04.2003
Carl Qual 3 09.12.2009

The example input contains a set of dates on which tests were
given, where each date is in a row corresponding to the name
of the test taker, and in a column corresponding to the name of

104 CoMMuniCAtionS oF thE ACM | AuguST 2012 | vOL. 55 | NO. 8

research highlights

checks if the resulting associative program is consis-
tent. If so, then Generate adds the associative program
to the set of consistent component programs. The table
program TabProg(K*) stores all table programs that are
consistent with the example if any exist, and is thus called
the complete table program of the example.

Procedure Intersect: Given two sets of table programs
represented as table programs stored in TabProg(K0) and
TabProg(K1), Intersect efficiently constructs the inter-
section of the sets as all consistent table programs stored in
TabProg(K0 ∩ K1).

The synthesis algorithm applies Generate to con-
struct the complete table program for each example,
applies Intersect to the set of complete table programs,
and checks if the resulting table program TabProg(KI)
is consistent with each of the examples. If so, it returns
TabProg(K′I) for some subset K′I of KI that covers each of
the examples. The exact choice of K′I depends on the rank-
ing criteria.

ranking: We prefer table programs that are constructed
from smaller sets of component programs, as such table
programs are intuitively simpler. The subset order over sets
of component programs thus serves as a partial order for
ranking. Also, suppose that a table program P0 uses a filter
program F0, while another table program P1 uses a filter pro-
gram F1 that builds the same map as F0, but whose condition
is a conjunction of fewer predicates than the condition of F0.
Then, we prefer P1, as the condition used by F1 is intuitively
more general.

To evaluate our synthesis algorithm, we implemented it
as a plug-in for the Excel spreadsheet program and applied it
to input–output tasks taken directly from over 50 real-world
Excel user help threads. The tool automatically inferred pro-
grams for each task. The tool usually ran in under 10 s and
inferred a program that behaved as we expected, given the
user’s description in English of their required transforma-
tion. If the highest-ranking program inferred by the tool
behaved in an unexpected way on an input, it inferred a pro-
gram that behaved as expected after taking at most two addi-
tional examples.

6. RELAtED WoRk
The Human Computer Interaction (HCI) community
has developed programming by demonstration (PBD) sys-
tems1 for data cleaning, which require the user to specify
a complete demonstration or trace visually on the data
instead of writing code: SMARTedit14 for text manipula-
tion, Simultaneous Editing16 for string manipulation,
and Wrangler11 for table transformations. Our system is
based on programming by example (as opposed to dem-
onstration); it requires the user to provide only the initial
and final states, as opposed to also providing the inter-
mediate states. This renders our system more usable,13
but at the expense of complicating the learning problem.
Furthermore, we synthesize programs over a more sophis-
ticated language consisting of conditionals and loops.

The database community has studied the view syn-
thesis problem,2, 22 which aims to find a succinct query
for a given relational view instance. Our semantic string

the form RelColi or RelRowj. The spatial function RelColi
takes a cell c as input, and returns the cell in the same row
as c and in column i. The spatial function RelRowj takes a
cell c as input, and returns the cell in row j and in the same
column as c. For each cell c in the domain of mK, the map of
A contains an entry mA(s0(c)) = s1(mF(c)).

For the example tables in Example 5, and the filter
 program F1 introduced above that maps to column 3 of
the example output table, the associative program A1 =
Assoc(F1, RelCol1, RelCol1) constructs a map to every
cell in column 1 of the output table. To construct its map,
A1 takes each cell c in the input table mapped by F1, finds the
cell RelCol1(c) in the same row as c and in column 1, finds
the coordinate mF1

(c) that F1 maps c to, finds the coordinate
RelCol1(mF1

(c)), and maps RelCol1(c) to RelCol1(mF1
(c)): that

is, A1 sets mA1
(RelCol1(c)) = RelCol1(mF1

(c)). Similarly,
the associative program A2 = Assoc(F1, RelRow1, RelCol2)
constructs a map to every cell in column 2 of the example
output table. The table program TabProg({F1, A1, A2}) takes
the input table in Example 5 and maps to every cell in the
output table.

It is possible that the ranges of constituent component
programs of a table program may overlap on a given input
table. In such a case, if two cells with different values are
mapped to the same output coordinate, then we say that the
table program is undefined on the input table.

5.2. Synthesis algorithm
The synthesis algorithm generates the set of all table pro-
grams that are consistent with each example, intersects the
sets, and picks a table program from the intersection that is
consistent with all of the examples.

data structure for sets of table programs: To compactly
represent sets of table programs, our synthesis algorithm
uses a table program itself. Let a component program K be
consistent with an input–output example if when K is applied
to the example input and K maps an input cell c, then the
cell in the output table at coordinate mK(c) has the same
data as cell c in the input table. Let a set of component pro-
grams K cover an example if, for each cell coordinate d in the
example output, there is some component K ∈ K and cell c
in the input table such that d = mK(c). Let a table program
TabProg(K) be consistent with an example if K is consis-
tent with the example and K covers the example. For a fixed
input–output example, TabProg(K) stores TabProg(K′) if
K′ Í K covers the example.

Procedure Generate: From a single input–output
example, Generate constructs a table program that
stores the set of all table programs that are consistent
with the example by constructing the set K* of all consis-
tent component programs, in three steps. First, from the
example input and output, Generate defines a set of spa-
tial functions and map predicates. Second, from the set of
map predicates, Generate collects the set of all consis-
tent filter programs. Third, from the set of consistent fil-
ter programs, Generate constructs the set of consistent
associative programs. To generate associative programs,
Generate combines each consistent filter program with
pairs of spatial functions defined in the first step and

AuguST 2012 | vol. 55 | no. 8 | CoMMuniCAtionS oF thE ACM 105

transformation synthesis also infers similar queries, but
infers from very few examples and over a richer language
that combines lookup operations with syntactic manipula-
tions. Our table layout synthesis addresses the challenges
of dealing with spreadsheet tables, which, unlike database
relations, have ordering relationships between rows and
carry meta- information in some cells.

The PADS project in the programming languages com-
munity has simplified ad hoc data-processing tasks for
programmers by developing domain-specific languages
for describing data formats, and learning algorithms for
inferring such formats using annotations provided by
the user.3 The learned format can then be used by pro-
grammers to implement custom data-analysis tools. In
contrast, we focus on automating the entire end-to-end
process for relatively simpler tasks, which include not only
learning the text structure from the inputs, but also learn-
ing the desired transformation from the outputs, without
any user annotations.

The area of program synthesis is gaining renewed inter-
est. However, it has traditionally focused on synthesizing
nontrivial algorithms20 (e.g., graph algorithms9 and pro-
gram inverses19) and discovering intricate code-snippets
(e.g., bit-vector tricks,7 switching logic in hybrid systems21).
In this paper, we apply program synthesis to discover sim-
pler programs required by the much larger class of spread-
sheet end-users. Various classes of techniques have been
explored for program synthesis: exhaustive search, logi-
cal reasoning, probabilistic inference, and version-space
algebras (for a recent survey, see Gulwani5). Because the
data manipulations required by end users are usually rela-
tively simple, we can apply version-space algebras, which
allow real-time performance, unlike other techniques.
Version-space algebras were pioneered by Mitchell for
refinement-based learning of Boolean functions,17 while
Lau et al. extended the concept to learning more complex
functions in a PBD setting.14 Our synthesis algorithms lift
the concepts of version-space algebra to the PBE setting,
for a fairly expressive string expression language involving
conditionals and loops.

7. ConCLuSion AnD FutuRE WoRk
General-purpose computational devices, such as smart-
phones and computers, are becoming accessible to people
at large at an impressive rate. In the future, even robots
will become household commodities. Unfortunately, pro-
gramming such general-purpose platforms has never been
easy, because we are still mostly stuck with the model of
providing step-by-step, detailed, and syntactically correct
instructions on how to accomplish a certain task, instead
of simply describing what the task is. Program synthesis
has the potential to revolutionize this landscape, when
targeted for the right set of problems and using the right
interaction model.

This paper reports our initial experience with design-
ing domain-specific languages and inductive synthe-
sizers for string and table transformations. Our choice
of domains was motivated by our study of help-forum
problems that end users struggled with. A next step is to

Sumit Gulwani (sumitg@microsoft.com),
microsoft research, redmond, Wa.

William R. harris (wrharris@cs.wisc.edu),
univ. of Wisconsin, madison, WI.

Rishabh Singh (rishabh@csail.mit.edu),
mIt CsaIl, Cambridge, ma.

© 2012 aCm 0001-0782/12/08 $15.00

develop a general framework that can allow synthesizer
writers to easily develop domain-specific synthesizers of
the kind described in this paper, similar to how declara-
tive parsing frameworks allow a compiler writer to easily
write a parser.

Acknowledgments
We thank Guy L. Steele Jr. for providing insightful and
detailed feedback on multiple versions of this draft.

 1. Cypher, a., ed. Watch What I Do:
Programming by Demonstration, mIt
press, 1993.

 2. Das sarma, a., parameswaran,
a., garcia-molina, h., Widom, j.
synthesizing view definitions from
data. In ICDT (2010).

 3. fisher, k., Walker, D. the paDs project:
an overview. In ICDT (2011).

 4. gualtieri, m. Deputize end-user
developers to deliver business agility
and reduce costs. In Forrester Report
for Application Development and
Program Management Professionals
(apr. 2009).

 5. gulwani, s. Dimensions in program
synthesis. In PPDP (2010).

 6. gulwani, s. automating string
processing in spreadsheets using input-
output examples. In POPL (2011).

 7. gulwani, s., jha, s., tiwari, a.,
venkatesan, r. synthesis of loop-free
programs. In PLDI (2011).

 8. harris, W.r., gulwani, s. spreadsheet
table transformations from examples.
In PLDI (2011).

 9. Itzhaky, s., gulwani, s., Immerman,
n., sagiv, m. a simple inductive
synthesis methodology and its
applications. In OOPSLA (2010).

10. jha, s., gulwani, s., seshia, s., tiwari,
a. oracle-guided component-based
program synthesis. In ICSE (2010).

11. kandel, s., paepcke, a., hellerstein, j.,
heer, j. Wrangler: Interactive visual
specification of data transformation
scripts. In CHI (2011).

12. ko, a.j., myers, b.a., aung, h.h.
six learning barriers in end-user
programming systems. In VL/HCC
(2004).

13. lau, t. Why p b D systems fail:
lessons learned for usable aI. In CHI
2008 Workshop on Usable AI (2008).

14. lau, t., Wolfman, s., Domingos,
p., Weld, D. programming by
demonstration using version space
algebra. Mach. Learn. 53(1–2) (2003).

15. lieberman, h. Your Wish is My
Command: Programming by Example,
morgan kaufmann, 2001.

16. miller, r.C., myers, b.a., Interactive
simultaneous editing of multiple text
regions. In USENIX Annual Technical
Conference (2001).

17. mitchell, t.m. generalization as search.
Artif. Intell. 18, 2 (1982).

18. singh, r., gulwani, s. learning
semantic string transformations from
examples. PVLDB 5 (2012), in press.

19. srivastava, s., gulwani, s., Chaudhuri,
s., foster, j.s. path-based inductive
synthesis for program inversion. In
PLDI (2011).

20. srivastava, s., gulwani, s., foster, j.
from program verification to program
synthesis. In POPL (2010).

21. taly, a., gulwani, s., tiwari, a.
synthesizing switching logic using
constraint solving. In VMCAI (2009).

22. tran, Q.t., Chan, C.y., parthasarathy, s.
Query by output. In SIGMOD (2009).

23. Walkenbach, j. Excel 2010 Formulas,
john Wiley and sons, 2010.

References

