
Generating Programmatic Referring Expressions via Program Synthesis

Jiani Huang 1 Calvin Smith 2 Osbert Bastani 1 Rishabh Singh 3 Aws Albarghouthi 2 Mayur Naik 1

Abstract
Incorporating symbolic reasoning into machine
learning algorithms is a promising approach to
improve performance on learning tasks that re-
quire logical reasoning. We study the problem
of generating a programmatic variant of referring
expressions that we call referring relational pro-
grams. In particular, given a symbolic representa-
tion of an image and a target object in that image,
the goal is to generate a relational program that
uniquely identifies the target object in terms of
its attributes and its relations to other objects in
the image. We propose a neurosymbolic program
synthesis algorithm that combines a policy neu-
ral network with enumerative search to generate
such relational programs. The policy neural net-
work employs a program interpreter that provides
immediate feedback on the consequences of the
decisions made by the policy, and also takes into
account the uncertainty in the symbolic represen-
tation of the image. We evaluate our algorithm
on challenging benchmarks based on the CLEVR
dataset, and demonstrate that our approach signif-
icantly outperforms several baselines.

1. Introduction
Incorporating symbolic reasoning with deep neural net-
works (DNNs) is an important challenge in machine learn-
ing. Intuitively, DNNs are promising techniques for pro-
cessing perceptual information; then, symbolic reasoning
should be able to operate over the outputs of the DNNs to ac-
complish more abstract tasks. Recent work has successfully
applied this approach to question-answering tasks, showing
that leveraging programmatic representations can substan-
tially improve performance—in particular, in visual question
answering, by building a programmatic representation of

1University of Pennsylvania 2University of Wisconsin-
Madison 3Google Brain. Correspondence to: Jiani Huang
<jianih@seas.upenn.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

the question and a symbolic representation of the image, we
can evaluate the question representation in the context of
the image representation to compute the answer (Yi et al.,
2018; Mao et al., 2019; Ma et al., 2019).

A natural question is whether incorporating symbolic rea-
soning with DNNs can be useful for tasks beyond question
answering. In particular, consider the problem of generating
a referring expression—i.e., an image caption that uniquely
identifies a given target object in a given image (Golland
et al., 2010; Kazemzadeh et al., 2014). In contrast to visual
question answering, where we translate a question to a pro-
gram and then execute that program, in this case, we want to
synthesize a program identifying the target object and then
translate this program into a caption.

In this paper, we take a first step towards realizing this ap-
proach. In particular, we study the problem of generating a
programmatic variant of referring expressions that we call
referring relational programs. We assume we are given a
symbolic representation of an image—such a representation
can be constructed using state-of-the-art deep learning algo-
rithms (Redmon et al., 2016; Krishna et al., 2017; Yi et al.,
2018; Mao et al., 2019)—together with a target object in
that image. Then, our goal is to synthesize a relational pro-
gram that uniquely identifies the target object in terms of its
attributes and its relations to other objects in the image. Fig-
ure 1 (left) shows an example of an image from the CLEVR
dataset, and two referring relational programs for object G
in this image. The task for this image is challenging since G
has identical attributes as H, which means that the program
must use spatial relationships to distinguish them.

Our formulation of referring relational programs can take
into account the uncertainty in the predictions of the DNN
used to construct the symbolic representation of the image.
One approach would be to use probabilistic reasoning, but
doing so can be computationally intractable. Instead, we
use an approach based on uncertainty sets—we construct
uncertainty sets that include all DNN predictions above a
certain probability threshold, and require that the referring
relational program uniquely identify the target object for all
possible configurations in these uncertainty sets.

Based on this formulation, we propose an algorithm for
synthesizing referring relational programs given the sym-

Generating Programmatic Referring Expressions via Program Synthesis

Program 1:
color(var0, gray)
/\ front(var0, var1)
/\ color(var1, brown)

Output:
{ var0 = G, var1 = F }

Program 2:
color(var0, gray)
/\ front(var0, var1)
/\ shape(var1, cube)

Output:
{ var0 = G, var1 = C }
{ var0 = G, var1 = B }

Program:
color(var0, blue) /\ shape(var0, cube) /\ size(var0, large)
/\ left(var0, var1) /\ left(var1, var2)
/\ left(var0, var2) /\ color(var2, blue) /\ shape(var2, cube)
/\ size(var2, large) /\ material(var2, rubber)

Output:
{ var0 = A, var1 = B, var2 = C }

A B C D E F G

Figure 1. Left: An example image from the CLEVR dataset, and two referring relational programs that identify the target object G. The
challenge is distinguishing G from the second gray cube H. The first program identifies the target object as the “gray object in front of the
brown object”, where the brown object is the sphere F. The second program identifies the target object as the “gray object in front of the
cube”. In this case, the cube can be either B or H, but either of these choices uniquely identifies G. Right: A challenging problem instance
that requires several relations to solve (especially when restricted to three free variables—i.e., |Z| = 3). The program shown is generated
by our algorithm. It identifies the target object as “the large blue cube to the left of the object to the left of a large blue rubber cube”.

bolic representation of the image.1 Fundamentally, program
synthesis is a combinatorial search problem. The objective
is to search over the space of possible programs to find one
that achieves the given goal—in our case, find a relational
program that uniquely identifies the target object when eval-
uated against the symbolic representation of the image.

To account for the combinatorial size of the search space, our
synthesis algorithm builds on recent techniques for speeding
up program synthesis. First, it leverages execution-guided
synthesis (Chen et al., 2018), where deep learning is used
to guide the search over the space of programs. This ap-
proach formulates the search problem as a Markov decision
process, where actions correspond to decisions about which
statements to include in the program, and states correspond
to the intermediate program state obtained by incrementally
evaluating the program generated so far. Then, it uses deep
reinforcement learning to solve the synthesis problem. In
particular, we use deep Q-learning, where the Q-network
is a graph convolutional network (GCN) that takes as input
a graph encoding of the program state; then, the Q-value
for each action is evaluated based on local representations,
avoiding the use of a lossy global representation.

Second, we leverage hierarchical synthesis (Nye et al.,
2019), where the neurosymbolic synthesizer is combined
with a faster but unguided enumerative synthesizer—
intuitively, the neurosymbolic synthesizer generates the ma-
jority of the program. Then, the enumerative synthesizer

1Our implementation is available at: https://github.
com/moqingyan/object_reference_synthesis.

fills in the remainder of the program, which tends to be
a smaller but more challenging search problem. Finally,
we use a simple meta-learning approach (Si et al., 2018b),
where the Q-network is pretrained on a benchmark of train-
ing synthesis tasks; this Q-network is used to initialize the
Q-networks for solving future synthesis tasks.

We evaluate our approach on the CLEVR dataset (Johnson
et al., 2017), a synthetic dataset of objects with different
attributes and spatial relationships. Our goal is to generate
a relational program that identifies one of the objects in
the scene. We consider both synthetic examples where
the ground truth scene graph is known, as well as cases
where the scene graph is predicted using a convolutional
neural network (CNN) and may be prone to error. We
leverage control over the data generation process to generate
problem instances that are particularly challenging—i.e.,
where there are multiple objects with the same attributes in
each scene. By doing so, a valid relational referring program
must include complex spatial relationships to successfully
identify the target object. We demonstrate how our approach
outperforms several baselines, including a state-of-the-art
program synthesizer (Si et al., 2018b).

Finally, we discuss how our approach connects to the origi-
nal referring expressions task in Section 5.

Related work. There has been a great deal of recent in-
terest in leveraging program synthesis to improve machine
learning—e.g., to classify images based on their parts (Lake
et al., 2015), to infer the structure of images (Ellis et al.,
2015; 2018b; Pu et al., 2018), to perform procedural tasks

https://github.com/moqingyan/object_reference_synthesis
https://github.com/moqingyan/object_reference_synthesis

Generating Programmatic Referring Expressions via Program Synthesis

over images (Gaunt et al., 2017; Valkov et al., 2018), to
generate images with programmatic structure (Young et al.,
2019), and interpretable and robust reinforcement learn-
ing (Verma et al., 2018; Bastani et al., 2018; Verma et al.,
2019; Jothimurugan et al., 2019; Inala et al., 2020). These
techniques demonstrate how incorporating program synthe-
sis into machine learning tasks can improve performance on
tasks that involve programmatic or symbolic reasoning.

Most closely related, there has been interest in leveraging
programmatic reasoning in the domain of visual question
answering (Mao et al., 2019; Ma et al., 2019). These ap-
proaches translate the question into a program using se-
mantic parsing, and translate the image into a symbolic
representation (e.g., a scene graph encoding the object at-
tributes and relationships); then, they execute the program
in the context of the symbolic representation as input to
produce the answer to the given question.

Whereas visual question answering corresponds to execut-
ing a program in the context of the scene graph, our key
insight is that generating a referring expression corresponds
to synthesizing a program that, when executed in the con-
text of the scene graph, produces the given target object.
Recent approaches have used deep learning to generate re-
ferring expressions (Yu et al., 2016)—e.g., by leveraging
a learned comprehension module (Yu et al., 2017; Luo &
Shakhnarovich, 2017) or neural module networks (Liu et al.,
2019). Unlike our approach, these ones do not incorporate
programs and their semantics into the learning algorithm.

There has been work on incorporating logical reasoning
into deep neural networks to perform reasoning tasks such
as sorting and shortest path (Dong et al., 2019) or solving
Sudoku problems (Wang et al., 2019), including work in-
corporating relational reasoning into deep neural networks
to improve question answering (Santoro et al., 2017) and
planning (Santoro et al., 2018), as well as general frame-
works incorporating relational programs with probabilistic
inference (De Raedt et al., 2007) or deep learning (Cohen
et al., 2018; Manhaeve et al., 2018). In contrast, our goal is
to generate relational programs to achieve some goal.

There has been work on synthesizing relational pro-
grams (Albarghouthi et al., 2017; Si et al., 2018a;
Raghothaman et al., 2019; Si et al., 2019), though this work
focuses on relational programs with different structure than
ours. In particular, they typically assume the space of pos-
sible rules is not too large, and the goal is to find the right
combination of rules; in contrast, our goal is to find a single
rule in a combinatorially large search space of rules. There
has also been work on using machine learning to speed up
synthesis (Menon et al., 2013; Balog et al., 2017; Parisotto
et al., 2017; Bunel et al., 2018; Feng et al., 2018; Ellis et al.,
2018a); which we leverage in our algorithm.

2. Referring Relational Programs
Scene graph representation of images. We represent im-
ages via scene graphs G ∈ G. Vertices in G are objects
in the image, and edges encode relations between objects.
Unary relations represent attributes such as color and shape,
and binary relations capture spatial information between
objects—above, left, right, and the like. Abstractly, we
think of G as a set of relations over objects:

G =
{
ρi(o

i
1, . . . , o

i
ni
)
}n
i=1

,

where ρi ∈ R. Relations ρ(o1, ..., on) can be certain, uncer-
tain, or absent. Certain are guaranteed to be in the graph,
absent relations are guaranteed to not be in the graph, and
uncertain relations may or may not be in the graph. We rep-
resent this decomposition by writing G = G+ tG? as the
disjoint union of the certain relations G+ and the uncertain
relations G?; absent relations are omitted.

Relational programs. Our search space consists of rela-
tional programs, which we view as sets of relations over
variables. More precisely, let Z be a finite set of variables,
with zt ∈ Z a target variable representing the object being
referred to. A relational program has the form:

P =

m∧
i=1

ρi(z
i
1, ..., z

i
ni
).

A valuation v ∈ V is a function v : Z → O that maps each
variable to an object in the scene. Given a valuation, we can
ground the variables in a program using J·K: 2

JP Kv =
m∧
i=1

ρi(v(z
i
1), ..., v(z

i
ni
))

We will equivalently interpret JP Kv as the set of concrete
relationships in the conjunction—i.e.,

JP Kv =
{
ρi(v(z

i
1), ..., v(z

i
ni
))
}m
i=1

In this case, the grounding J·K converts P into a set of
predicates over objects. Then we can treat JP Kv : G →
B, where B = {true, false}, as a Boolean function over
scene graphs defined so that JP Kv (G) = (JP Kv ⊆ G)—
i.e., JP Kv (G) is true if and only if all of the relationships in
JP Kv are also contained in G.

Definition 2.1 A valuation v ∈ V is valid for relational
program P and scene graph G iff JP Kv (G) = true.

We denote the set of all valid valuations for P in G by

JP KG = {v ∈ V | JP Kv (G)} .
2We use the notation JP Kv to denote the semantics of a pro-

gram P—i.e., the output obtained by evaluating P . In our case,
P evaluates into a logical formula over objects, which can be
interpretered as a function mapping scene graphs to true/false.

Generating Programmatic Referring Expressions via Program Synthesis

Algorithm 1 Our algorithm for synthesizing referring rela-
tional programs. Hyperparameters are N,M,K ∈ N.

function SynthesizeProgram(G)
Initialize Q-network Qθ with pretrained parameters θ0

for i ∈ {1, ..., N} do
Sample program P of length M according to Qθ
if φG(P) then

return P
Update Qθ using deep Q learning

Get best length M −K program P 0 according to Qθ
for Programs P of length K do

if φG(P 0 ∧ P) then
return P 0 ∧ P

return ∅

Referring relational programs. Our goal is to generate a
relational program that satisfies the properties of a referring
expression (Golland et al., 2010; Kazemzadeh et al., 2014).
Given a scene and an object ot in that scene, a referring
expression is a natural language caption that uniquely iden-
tifies ot. Figure 1 shows an example of an image together
with referring relational programs that identify the target
object in that image, and Figure 2 shows an example of a
scene graph (ignoring the gray variable nodes).

We study a symbolic variant of this problem—i.e., (i) we
assume the image is given as a scene graphG (e.g., these can
be constructed using deep learning (Redmon et al., 2016;
Krishna et al., 2017; Yi et al., 2018; Mao et al., 2019)), and
(ii) our referring expressions are relational programs that
uniquely identify ot. More precisely, given a scene graph
G and an object ot in G, we want to construct a relational
program P such that zt must refer to ot in the context of G.

Definition 2.2 Given scene graph G and target object ot
in G, P is a referring relational program for ot in G if (i)
JP KG+

6= ∅, and (ii) for all v ∈ JP KG, v(zt) = ot.

Intuitively, a referring relational program must (i) have at
least one certain interpretation, and (ii) all interpretations
must refer to the target object, regardless of the value of
uncertain relations. In the rest of this paper, we assume
ot is encoded in G via a unary target relation, and use
the predicate φG(P) to indicate P is a referring relational
program for the encoded ot in G.

3. Program Synthesis Algorithm
Next, we describe our algorithm that, given a scene graph
G, synthesizes a referring relational program P for G. At a
high level, we formulate the synthesis problem as a Markov
decision process (MDP). We then use reinforcement learn-
ing to learn a good policy π for this MDP on a training
benchmark. Then, given a new test graph G, we continue

Figure 2. Example of a graph encoding of a state. Variables are
shown in gray and objects are shown in purple. Binary relation-
ships are shown in red (for a vertex ρ) and pink (for a vertex (i, ρi)).
Unary relationships are shown in yellow; these relationships only
have a single object, so we do not need a separate vertex for each
relationship in (i, ρi). The target relationship is shown in blue.

to fine-tune π holding G fixed, and return once we find
a referring relational program P for G. Our algorithm is
summarized in Algorithm 1.

Formulation as an MDP. We begin by describing how to
formulate the problem of synthesizing a referring relational
program as a Markov decision process (MDP); Figure 3
visualizes our MDP. Intuitively, since we want the MDP
to encode a search over relational programs, one approach
would be to choose the states to be relational programs P
and the actions to be predicates ρ(z1, ..., zn); then, taking
such an action in state P transitions the system to

P ′ = P ∧ ρ(z1, ..., zn)

While this approach is possible, the states are not very infor-
mative since they do not encode any information about the
semantics of relational programs. Intuitively, a policy for
this MDP would have to internally construct an interpreter
for relational programs to achieve good performance.

Instead, we build on an approach known as execution-guided
synthesis (Chen et al., 2018), where the states are the outputs
produced by executing programs P . Intuitively, our goal is
to compute a program P such that all consistent valuations
uniquely identify the target object—i.e., v(zt) = ot. Thus,
given a graph G ∈ G for the current image (which is fixed
for a rollout), we consider the output of P to be the set of
valuations v ∈ V that are consistent with G.

In particular, the states s ∈ S in our MDP are s = (G,V),
where G is a scene graph and V ⊆ V is a subset of valu-
ations. Given a graph G, the initial state is s0 = (G,V);
this choice corresponds to the empty program P0 = true
(so JP0KG = V). Next, the actions a ∈ A in our MDP are

Generating Programmatic Referring Expressions via Program Synthesis

(State)

GNN

Interpreter
(Environment)

gray(var0)
(Action)

Input
(Symbolic)

var0 var1

(State)

GNN

Interpreter
(Environment)

front(var0, var1)
(Action)

var0 var1

(State)

GNN

Interpreter
(Environment)

brown(var1)
(Action)

var0 var1

(State)

var0 var1

1
(Reward)

Figure 3. Example rollout according to our MDP. The input is a symbolic representation of the image as a graph. The states encode
possible assignments of variables to objects in the scene; these are represented as graphs such as the one shown in Figure 2. The actions
are clauses ρ(z1, ..., zn); an action is chosen according to the Q-values predicted by the GNN Q-network. The interpreter, which serves
as the “environment”, removes the variables assignments that are no longer permitted by the newly chosen clause.

a = (ρ, z1, ..., zn) ∈ R×Z∗,

(G,V ′) = T ((G,V), (ρ, z1, ..., zn))

V ′ = {v ∈ V | Jρ(z1, ..., zn)Kv(G)}.

That is, V ′ is the set of all valuations that are consistent with
G given the additional predicate ρ(z1, ..., zn). Finally, we
use a sparse reward function

R((G,V)) = 1(∀v ∈ V. v(zt) = ot).

In particular, suppose we take a sequence of actions

(ρ1, z
1
1 , ..., z

1
n1
), ..., (ρm, z

m
1 , ..., z

m
nm

).

Then, letting P be the relational program

P =

m∧
i=1

ρi(z
i
1, ..., z

i
nm

),

the state V after taking these actions equals is

V = {v ∈ V | JP Kv(G)} = JP KG.

Thus, R((G,V)) = 1 if and only if the program P cor-
responding to the sequence of actions taken is a referring

relational program for G. Thus, a policy that achieves good
reward on this MDP should quickly identify a valid referring
relational program for a given graph G.

To handle uncertain relationships, we keep track of both
certain and uncertain relationships—i.e., the initial state is
s0 = (G,V,∅), and the transitions are

(G,V ′+, V
′
?) = T ((G,V), (ρ, z1, ..., zn))

where

V ′+ = {v ∈ V+ | Jρ(z1, ..., zn)Kv (G+)}
V ′? = {v ∈ V? | Jρ(z1, ..., zn)Kv (G)}

∪ {v ∈ V+ | Jρ(z1, ..., zn)Kv (G?)} .

Finally, the rewards are as before—i.e.,

R((G,V+, V?)) = 1(∀v ∈ V+ ∪ V?. v(zt) = ot)

Reinforcement learning. We use the deep Q-learning
algorithm with a replay buffer to perform reinforcement
learning—surprisingly, we found this approach outper-
formed policy gradient and actor-critic approaches. Intu-
itively, we believe it works well since the states in our formu-
lation capture a lot of information about the progress of the

Generating Programmatic Referring Expressions via Program Synthesis

policy. Given the deep Q-network Qθ(s, a), the correspond-
ing policy π is to use Qθ(s, a) with ε-greedy exploration—
i.e., π(s) = argmaxa∈AQθ(s, a) with probability 1 − ε,
and π(s) ∼ Uniform(A) with probability ε.

State encoding. A key challenge is designing a neural
network architecture for predicting Qθ(s, a). Our approach
is based on encoding s = (G,V) as a graph data structure,
and then choosing Qθ(s, a) to be a graph neural network
(GNN). Our graph encoding of (G,V) has three main kinds
of vertices: (i) objects o in G, (ii) relationships ρ ∈ R, and
(iii) variables z ∈ Z , as well as a few auxiliary kinds of
vertices to support the graph encoding. In Figure 2, we show
an example of a graph encoding of a state in our MDP.

First, each object o is represented by exactly one vertex
in the graph; each relationship ρ ∈ R is represented by
exactly one vertex in the graph; and each variable z ∈ Z is
represented by exactly one vertex in the graph.

Second, for each relationship ρi(oi,1, ..., oi,ni
) ∈ G, we

introduce n+ 1 new vertices {(i, ρi), (i, 1), ..., (i, ni)} into
the graph, along with the edges

(i, ρi)→ (i, 1)→ o1, ..., (i, ρi)→ (i, ni)→ oni

as well as the edge ρi → (i, ρi). This approach serves two
purposes. The first purpose is that the intermediate vertex
(i, ρi) distinguishes different relationships in G with the
same type ρi ∈ R. In addition, the edges ρi → (i, ρi)
connects all relationship of the same type, which allows
information to flow between these parts of the graph—for
example, these edges could help the GNN count how many
occurrences of the relationship “red” are in G. The second
purpose is that the intermediate vertices (i, j) preserve infor-
mation about the ordering of the objects in the relationship—
e.g., in front(o, o′), the edge (i, 0)→ o indicates that o is in
front, and (i, 1)→ o′ indicates that o′ is behind.

Third, to encode the valuations v ∈ V , we include the
following edges in the graph:⋃

v∈V
{z → v(z) | z ∈ Z}.

Intuitively, these edges capture all possible assignments of
objects o to variables z that are allowed by V . For instance,
in the initial state S0 = (G,V), these edges are z → o for
every z ∈ Z and o in G. This encoding loses information
about V , since an assignment o to z may only be allowed for
a subset of v ∈ V . However, V is combinatorial in size, so
encoding the entire structure of V yields too large a graph.

To ensure that information can flow both ways, all edges in
our encoding described above are bidirectional.

Finally, for settings G = (G+, G?) where we consider un-
certain relationships, we encode whether the relationship is

certain as an edge type ρ +−→ (i, ρi) for certain relationships
in G+ and ρ ?−→ (i, ρi) for uncertain relationships in G?.
Similarly, we use z +−→ v(z) for certain valuations v ∈ V+
and z ?−→ v(z) for uncertain valuations v ∈ V?.

Neural network architecture. As mentioned above,
Qθ(s, a) is based on a graph convolutional network
(GCN) (Kipf & Welling, 2017). We use ψ(s) to denote
the graph encoding of s = (G,V) described above, where
in addition each node is represented by a fixed embedding
vector depending on its node name. The relationship vertices
ρ and (i, ρi) have an embedding vector xρ. The positional
vertices (i, j) encoding object ordering use an single embed-
ding xρi,j specific to both the corresponding relationship ρi
and the object position j within the relationship.

Now, Qθ applies a sequence of graph convolutions to ψ(s):

ψ(0) = ψ(s)

ψ(t+1) = f
(t)
θ (ψ(t)) (∀t ∈ {0, 1, ...,m− 1}.

Each ψ(t) has the same graph structure as ψ(s), but the
embedding vectors x(t)k associated with each vertex k are
different (i.e., computed as a function of the embeddings in
the previous layer and of the GCN parameters).

Finally, at the output layer, Qθ decodes the Q-values for
each action ρ(z1, ..., zn) based on the embedding vectors of
the corresponding vertices ρ, z1, ..., zn:

Qθ(s, ρ(z1, ..., zn)) = gθ(x
(m)
ρ , x(m)

z1 , ..., x(m)
zn)

The architecture of gθ can be any aggregation method from
vertex level to action level. Two example strategies are
LSTM structure and concatenation.

Hierarchical synthesis. We adopt an approach based on
hierarchical synthesis (Nye et al., 2019). The idea is to
combine a neurosymbolic synthesizer with a traditional one
based on enumerative search. Intuitively, the neurosymbolic
synthesizer can determine the majority of the program, after
which the enumerative synthesizer can be used to complete
the program into one that satisfies φG(P).

More precisely, in the first phase, we run the neurosymbolic
synthesizer for a fixed number N of steps. At each step in
this phase, we generate a program P of length M ; if we
find one that satisfies φG(P), then we return it. Otherwise,
we continue to the second phase. In this phase, we begin by
constructing the best program P 0 of length M −K accord-
ing to Qθ (i.e., use zero exploration ε = 0), where K ∈ N
is a hyperparameter of our algorithm. Then, we perform an
exhaustive search over programs P of length K, checking
if the combined program P ′ = P 0 ∧ P satisfies φG(P ′). If
we find such a program, then we return it. Finally, we return
∅ if we do not find a valid program, indicating failure.

Generating Programmatic Referring Expressions via Program Synthesis

Figure 4. Our Q-network architecture. It takes as input an encoding of the state as a graph, and produces a vector embedding for each
node using a GCN. Then, it predicts Q(s, a) based on the vector embeddings for the nodes in the graph relevant to the action a.

Meta-learning. Finally, the algorithm we have described so
far is for synthesizing a single referring relational program
from scratch for a given scene graph G. We use a simple
meta-learning approach where we pretrain Qθ on a training
benchmark of similar synthesis problems. In particular, we
assume given a training set Gtrain ⊆ G of scene graphs; then,
we use deep Q-learning to train a neural network Qθ0 that
achieves high reward on average for random

θ0 = argmax
θ

E
G∼Uniform(Gtrain)

[J(θ;G)],

where J(θ;G) is the standard Q-learning objective for the
MDP constructed for scene graph G.

Overall algorithm. Our overall algorithm is summarized
in Algorithm 1. It takes as input a scene graph G, and
outputs a relational referring program P (i.e., that satisfies
φG(P)), or ∅ if it fails to find such a program. The first
step initializes Qθ with the pretrained parameters θ0. Then,
the first phase uses deep Q-learning to tune θ based on
programs P of length M sampled from the MDP for G. If
no valid program is found, then it proceeds to the second
phase, where it performs an exhaustive enumerative search
over programs P 0 ∧P , where P 0 is the optimal program of
length M −K according to Qθ. If again no valid program
is found, then it returns ∅ to indicate failure.

4. Experiments
We evaluate our approach on the CLEVR dataset, both (i) on
purely synthetic graphs that we generated, and (ii) on graphs
constructed using a CNN based on the synthetic images in
the dataset. As we discuss below, we focus on synthetic data
since it allows us to generate challenging problem instances
that require the use of relationships involving multiple ob-
jects (in this case, spatial relationships). We show that our
approach outperforms several baselines on these datasets.

4.1. Experimental Setup

Synthetic graphs. The first dataset is a set of synthetic
scene graphs that include objects and relations between
these objects, including unary ones (called attributes),
namely shape, color, and material, as well as binary ones that
encode spatial relations, namely front/behind and left/right.

Using this approach, we can create challenging problem
instances (i.e., a scene graph and a target object) to evaluate
our algorithm. Our primary goal is to create problem in-
stances where the referring relational program has to include
spatial relationships to identify the target object. These in-
stances are challenging since multiple relations are needed
to distinguish two identical objects—e.g., in Figure 1 (left),
at least two relations are needed to distinguish G from H,
and more are needed in Figure 1 (right).

To this end, we create graphs with multiple identical objects
in the scene. We classify these datasets by the set of counts
of identical objects (in terms of attributes). For instance, the
dataset CLEVR-4-3 consists of 7 objects total, the first 4
and last 3 of which have identical attributes—e.g., it might
contain 4 gray metal cubes and 3 red metal spheres.

For simplicity, we directly generate scene graphs; thus, they
do not contain any uncertainty. We impose constraints on the
graphs to ensure they can be rendered into actual CLEVR
images if desired. We consider the following datasets: 3-1-
1-1-1, 4-1-1-1, 5-1-1, 6-1, 5-2, and 4-3. For each dataset,
we use 7 total objects. Each dataset has 30 scene graphs for
training (a total of 210 problem instances), and 500 scene
graphs for testing (a total of 3500 problem instances).

CLEVR images. We also evaluate based on a dataset of
images from the original CEVR dataset. These images have
the same kinds of relations as our generated scene graphs.

We use a convolutional neural network (CNN) to construct
the scene graph (Yi et al., 2018). For simplicity, this CNN
predicts both object attributes and positions. The object
attributes are predicted independently—i.e., it could predict
that object J is both red with probability 0.75 and purple
with probability 0.75. We consider a relation to be absent
if p = p(ρ(o1, ..., on)) < 1/2; for relations with p ≥ 1/2,
we consider them to be uncertain if there are multiple such
attributes of the type (e.g., object J is predicted to be both red
and purple with probability ≥ 1/2), and certain otherwise.
The spatial relationships are inferred based on the object
positions; we consider it to be uncertain if the objects are
very close together along some dimension.

Our algorithm. We search for programs of length at most
M = 8, usingK = 2 in hierarchical synthesis. We consider

Generating Programmatic Referring Expressions via Program Synthesis

Figure 5. Fraction of problem instances solved in our benchmarks. Left: Comparing our algorithm (black) to baselines neurosymbolic
synthesis (blue), enumerative synthesis with M = 3 (red), SMT-based synthesis (green), and hill-climbing synthesis (yellow). Right:
Comparing our algorithm (black) to ablations without hierarchical synthesis (green) and without execution guidance (yellow).

three variables—i.e., |Z| = 3, including zt. We use N =
200 rollouts during reinforcement learning. We pretrain our
Q-network on the training set corresponding to each dataset,
using N = 10000 gradient steps with a batch size of 5.

4.2. Comparison to Baselines

We use each algorithm on our synthetic graphs dataset; in
Figure 5 (left), we report what fraction of each kind of
problem instance that is solved by each one.

Neurosymbolic synthesis. We compare to a state-of-the-art
synthesizer called Metal (Si et al., 2018b). This approach
uses reinforcement learning to find a program that satis-
fies the given specification; in addition, they use the same
simple meta-learning approach as ours. As can be seen in
Figure 5, our approach substantially outperforms this base-
line by using hierarchical synthesis and execution-guided
synthesis. For instance, on 6-1, our approach solves 82%;
in contrast, Metal solves just 19%. Similarly, on 4-3, our
approach solves 97% whereas Metal solves just 6%. We
believe Metal works poorly in our setting due to the lack of
intermediate feedback in our setting.

Enumerative synthesis. We compare to a synthesis algo-
rithm that enumerates programs to find one that solves the
task (Alur et al., 2013). This approach does not use ma-
chine learning to guide its search, making it challenging
to scale to large programs (i.e., large M) due to the com-
binatorial blowup in the search space; thus, we consider
M = 3. As can be seen in Figure 5, our approach substan-
tially outperforms enumerative synthesis. For instance, on
6-1, our approach solves 82%, whereas enumerative syn-
thesis solves 42%, and on 4-3, our approach solves 97%,
whereas enumerative synthesis solves 41%.

SMT-based synthesis. There have been a number of re-
cent tools for synthesizing Datalog programs using SMT
solvers. However, these approaches typically perform best
when the solutions are sparse in the search space, enabling
the solvers to quickly prune large parts of the search space.
In our setting, solutions are sufficiently common that prun-

ing the search space is difficult. To demonstrate this gap,
we have compared to a state-of-the-art Datalog synthesizer
called Zaatar (Albarghouthi et al., 2017) based on the Z3
SMT solver (De Moura & Bjørner, 2008). As can be seen
in Figure 5, our approach substantially outperforms Zataar.
For instance, on 6-1, our approach solves 82%, whereas Za-
atar solves 31%. Similarly, on 4-3, our approach solves
97%, whereas Zataar solves 12%. We also considered
Prosynth (Raghothaman et al., 2019), a recent Datalog syn-
thesizer based on CEGIS. However, Prosynth is designed
for synthesizing programs with multiple smaller Datalog
rules rather than synthesizing a single long Datalog rule, and
did not terminate in 10 minutes on any of our benchmarks.

Hill-climbing synthesis. We compare to a Datalog
synthesis algorithm that selects the clauses using hill-
climbing (De Raedt & Kersting, 2003). At each step, this
approach greedily selects the next clause to be the one that
eliminates the most bindings for the target variable. As can
be seen in the Figure 5, our approach substantially outper-
forms the hill-climbing synthesizer. For instance, on 6-1,
our approach solves 82%, whereas the hill-climbing syn-
thesizer solves 46%, and on 4-3, our approach solves 97%,
whereas the hill-climbing synthesizer solves 40%.

4.3. Comparison to Ablations

We compare to two ablations on the synthetic graph datasets;
in Figure 5 (right), we report what fraction of the bench-
marks in each category are solved.

Hierarchical synthesis. Next, we compare to an ablation
that does not use hierarchical synthesis—i.e., it only count
the program generated by the neural symbolic synthesizer,
but no enumerative search to correct the generated program.
As can be seen, our approach substantially outperforms
this ablation—e.g., on 6-1, hierarchical synthesis improves
performance from 35% to 82%, and on 4-3, it improves
performance from 46% to 97%. Intuitively, hierarchical
synthesis improves performance by using reinforcement
learning to find the larger but more straightforward parts of

Generating Programmatic Referring Expressions via Program Synthesis

Figure 6. Examples from the GQA dataset (Hudson & Manning,
2019). We show bounding boxes for objects relevant to the query.
In both cases, the target object is object A. We show the program
synthesized using our approach based on the ground truth scene
graphs, along with the possible variable bindings.

the program, whereas the enumerative synthesizer can find
the more challenging parts using brute force.

Execution guidance. We compare to an ablation where we
do not use the interpreter to guide RL; instead, the states
are partial programs P . In particular, this ablation does not
have feedback from the interpreter until the sparse reward
at the very end of a rollout. As can be seen from Figure 5,
using execution guidance improves our performance, espe-
cially on harder benchmarks—e.g., for the 6-1 benchmark,
it improves performance from 72% to 82%.

4.4. CLEVR Images

We tested our approach on CLEVR images where we con-
structed the scene graph using a CNN (Yi et al., 2018). Out
of 6487 tasks, our approach solved all but 25 according
to the ground truth relations—i.e., the ground truth in the
CLEVR dataset, not the predicted ones seen by our inter-
preter. Thus, our approach works well even when there is
uncertainty in the scene graph predicted using a CNN. We
compared to an ablation that ignores the uncertainty in the
predicted scene graph; it correctly solves all but 79 of the
6487 tasks, which is more than 3× the failure rate.

5. Discussion
We have focused on generating programmatic referring ex-
pressions on the synthetic CLEVR dataset. There are two
gaps compared to the original task (Golland et al., 2010;
Kazemzadeh et al., 2014): (i) the original goal is to generate
a natural language expression, and (ii) the original goal is to
do so for real-world images. We discuss in detail below.

Natural language expressions. While we have focused on
generating programmatic expressions since we can reason

about their semantics, we have implemented an approach
for translating a program P to natural language. First, we
select a single valuation v ∈ JP KG of the variables to con-
struct the translation; intuitively, we observe that natural
language expressions tend to try and bind each “variable” to
a unique object, whereas our programs can have multiple
bindings (e.g., program 2 in Figure 1). Second, we associate
each variable zi in P with the identifying phrase “object
i”, except the target object, which is associated with “target
object”. Third, for each zi, we add a sentence indicating the
unary attributes of object v(zi) according to P ; in addition,
we always include the shape and color of v(zi). Fourth, for
each binary relation in P , we include a sentence indicating
that relation. For example, the natural language referring
expression generated based on program 1 in Figure 1 is:

Object 1 is a brown sphere.
The target object is a gray cube.
The target object is in front of object 1.

While this approach produces expressions that are clear to
humans, they are highly structured and do not capture the
variety of human-generated expressions.

Real-world images. We focus on CLEVR both because
it allows us to generate challenging benchmarks, and be-
cause predicting scene graphs for real-world images re-
mains a challenging problem, though there has been recent
progress (Krishna et al., 2017; Xu et al., 2017; Zellers et al.,
2018). To illustrate the challenges, we generated referring
expressions based on the ground truth scene graphs from
the GQA dataset (Hudson & Manning, 2019). There are
two challenges we encountered: (i) many objects and re-
lationships are not labeled in the ground truth, and (ii) the
target object is often trivial to identify. Nevertheless, we
show two of the successful examples in Figure 6. On the
left, the goal is to identify the fork labeled A, which must be
distinguished from the other forks labeled B, E, and F. The
generated program roughly translates to “the large fork to
the left of the object”, where the “object” can be the napkin
labeled C, the plate labeled D, or one of the two other forks
labeled E and F. On the right, the goal is to identify the
woman labeled A, which must be distinguished from the
other woman labeled C. The generated program roughly
translates to “the woman wearing the red shirt”.

6. Conclusion
We have proposed an approach to solving a symbolic variant
of referring expressions using program synthesis. Our work
is a first step towards incorporating symbolic reasoning into
image captioning tasks. Future work includes translating
our programs into natural language in a way that is both
clear and “natural” (i.e., more similar to natural language),
and applying our approach to real-world images.

Generating Programmatic Referring Expressions via Program Synthesis

Acknowledgements
We thank the anonymous reviewers for insightful com-
ments. This research was supported in part by NSF awards
#1836936, #1836822, and CCF-1910769, and ONR award
#N00014-18-1-2021.

References
Albarghouthi, A., Koutris, P., Naik, M., and Smith, C.

Constraint-based synthesis of datalog programs. In In-
ternational Conference on Principles and Practice of
Constraint Programming, pp. 689–706. Springer, 2017.

Alur, R., Bodik, R., Juniwal, G., Martin, M. M.,
Raghothaman, M., Seshia, S. A., Singh, R., Solar-
Lezama, A., Torlak, E., and Udupa, A. Syntax-guided
synthesis. IEEE, 2013.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. Deepcoder: Learning to write programs.
In ICLR, 2017.

Bastani, O., Pu, Y., and Solar-Lezama, A. Verifiable rein-
forcement learning via policy extraction. In NIPS, 2018.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and Kohli,
P. Leveraging grammar and reinforcement learning for
neural program synthesis. In ICLR, 2018.

Chen, X., Liu, C., and Song, D. Execution-guided neural
program synthesis. In ICLR, 2018.

Cohen, W. W., Yang, F., and Mazaitis, K. R. Tensorlog:
Deep learning meets probabilistic databases. Journal of
Artificial Intelligence Research, 1:1–15, 2018.

De Moura, L. and Bjørner, N. Z3: An efficient smt solver.
In International conference on Tools and Algorithms for
the Construction and Analysis of Systems, pp. 337–340.
Springer, 2008.

De Raedt, L. and Kersting, K. Probabilistic logic learn-
ing. ACM SIGKDD Explorations Newsletter, 5(1):31–48,
2003.

De Raedt, L., Kimmig, A., and Toivonen, H. Problog: A
probabilistic prolog and its application in link discovery.
In IJCAI, volume 7, pp. 2462–2467. Hyderabad, 2007.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., and Zhou, D.
Neural logic machines. In ICLR, 2019.

Ellis, K., Solar-Lezama, A., and Tenenbaum, J. Unsuper-
vised learning by program synthesis. In Advances in neu-
ral information processing systems, pp. 973–981, 2015.

Ellis, K., Morales, L., Meyer, M. S., Solar-Lezama, A., and
Tenenbaum, J. B. Dreamcoder: Bootstrapping domain-
specific languages for neurally-guided bayesian program
learning. In NeurIPS, 2018a.

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum,
J. Learning to infer graphics programs from hand-drawn
images. In Advances in Neural Information Processing
Systems, pp. 6060–6069, 2018b.

Feng, Y., Martins, R., Bastani, O., and Dillig, I. Program
synthesis using conflict-driven learning. In PLDI, pp.
420–435, 2018.

Gaunt, A. L., Brockschmidt, M., Kushman, N., and Tar-
low, D. Differentiable programs with neural libraries. In
Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 1213–1222. JMLR. org,
2017.

Golland, D., Liang, P., and Klein, D. A game-theoretic ap-
proach to generating spatial descriptions. In Proceedings
of the 2010 conference on empirical methods in natu-
ral language processing, pp. 410–419. Association for
Computational Linguistics, 2010.

Hudson, D. A. and Manning, C. D. Gqa: A new dataset
for real-world visual reasoning and compositional ques-
tion answering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 6700–
6709, 2019.

Inala, J., Bastani, O., Tavares, Z., and Solar-Lezama, A.
Synthesizing programmatic policies that inductively gen-
eralize. In ICLR, 2020.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L.,
Lawrence Zitnick, C., and Girshick, R. Clevr: A diag-
nostic dataset for compositional language and elementary
visual reasoning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp.
2901–2910, 2017.

Jothimurugan, K., Alur, R., and Bastani, O. A composable
specification language for reinforcement learning tasks.
In Advances in Neural Information Processing Systems,
pp. 13021–13030, 2019.

Kazemzadeh, S., Ordonez, V., Matten, M., and Berg, T.
Referitgame: Referring to objects in photographs of natu-
ral scenes. In Proceedings of the 2014 conference on em-
pirical methods in natural language processing (EMNLP),
pp. 787–798, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Generating Programmatic Referring Expressions via Program Synthesis

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K.,
Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma,
D. A., et al. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. In-
ternational Journal of Computer Vision, 123(1):32–73,
2017.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Liu, R., Liu, C., Bai, Y., and Yuille, A. L. Clevr-ref+:
Diagnosing visual reasoning with referring expressions.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4185–4194, 2019.

Luo, R. and Shakhnarovich, G. Comprehension-guided
referring expressions. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
7102–7111, 2017.

Ma, K., Francis, J., Lu, Q., Nyberg, E., and Oltramari,
A. Towards generalizable neuro-symbolic systems
for commonsense question answering. arXiv preprint
arXiv:1910.14087, 2019.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and De Raedt, L. Deepproblog: Neural probabilistic
logic programming. In Advances in Neural Information
Processing Systems, pp. 3749–3759, 2018.

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J.
The neuro-symbolic concept learner: Interpreting scenes,
words, and sentences from natural supervision. In ICLR,
2019.

Menon, A., Tamuz, O., Gulwani, S., Lampson, B., and Kalai,
A. A machine learning framework for programming by
example. In ICML, pp. 187–195. Proceedings of Machine
Learning Research, 2013.

Nye, M., Hewitt, L., Tenenbaum, J., and Solar-Lezama, A.
Learning to infer program sketches. In ICML, 2019.

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D.,
and Kohli, P. Neuro-symbolic program synthesis. In
ICLR, 2017.

Pu, Y., Miranda, Z., Solar-Lezama, A., and Kaelbling, L.
Selecting representative examples for program synthesis.
In International Conference on Machine Learning, pp.
4158–4167, 2018.

Raghothaman, M., Mendelson, J., Zhao, D., Naik, M., and
Scholz, B. Provenance-guided synthesis of datalog pro-
grams. Proceedings of the ACM on Programming Lan-
guages, 4(POPL):1–27, 2019.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You
only look once: Unified, real-time object detection. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 779–788, 2016.

Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M.,
Pascanu, R., Battaglia, P., and Lillicrap, T. A simple neu-
ral network module for relational reasoning. In Advances
in neural information processing systems, pp. 4967–4976,
2017.

Santoro, A., Faulkner, R., Raposo, D., Rae, J., Chrzanowski,
M., Weber, T., Wierstra, D., Vinyals, O., Pascanu, R., and
Lillicrap, T. Relational recurrent neural networks. In
Advances in neural information processing systems, pp.
7299–7310, 2018.

Si, X., Lee, W., Zhang, R., Albarghouthi, A., Koutris, P., and
Naik, M. Syntax-guided synthesis of datalog programs.
In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp.
515–527, 2018a.

Si, X., Yang, Y., Dai, H., Naik, M., and Song, L. Learning
a meta-solver for syntax-guided program synthesis. In
ICLR, 2018b.

Si, X., Raghothaman, M., Heo, K., and Naik, M. Synthe-
sizing datalog programs using numerical relaxation. In
IJCAI, 2019.

Valkov, L., Chaudhari, D., Srivastava, A., Sutton, C., and
Chaudhuri, S. Houdini: Lifelong learning as program
synthesis. In Advances in Neural Information Processing
Systems, pp. 8701–8712, 2018.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,
S. Programmatically interpretable reinforcement learning.
In ICML, 2018.

Verma, A., Le, H., Yue, Y., and Chaudhuri, S. Imitation-
projected programmatic reinforcement learning. In Ad-
vances in Neural Information Processing Systems, pp.
15726–15737, 2019.

Wang, P.-W., Donti, P. L., Wilder, B., and Kolter, Z. Sat-
net: Bridging deep learning and logical reasoning us-
ing a differentiable satisfiability solver. arXiv preprint
arXiv:1905.12149, 2019.

Xu, D., Zhu, Y., Choy, C. B., and Fei-Fei, L. Scene graph
generation by iterative message passing. In CVPR, pp.
5410–5419, 2017.

Yi, K., Wu, J., Gan, C., Torralba, A., Kohli, P., and Tenen-
baum, J. Neural-symbolic vqa: Disentangling reasoning
from vision and language understanding. In Advances in

Generating Programmatic Referring Expressions via Program Synthesis

Neural Information Processing Systems, pp. 1031–1042,
2018.

Young, H., Bastani, O., and Naik, M. Learning neurosym-
bolic generative models via program synthesis. In ICML,
2019.

Yu, L., Poirson, P., Yang, S., Berg, A. C., and Berg, T. L.
Modeling context in referring expressions. In European
Conference on Computer Vision, pp. 69–85. Springer,
2016.

Yu, L., Tan, H., Bansal, M., and Berg, T. L. A joint speaker-
listener-reinforcer model for referring expressions. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7282–7290, 2017.

Zellers, R., Yatskar, M., Thomson, S., and Choi, Y. Neural
motifs: Scene graph parsing with global context. In
CVPR, pp. 5831–5840, 2018.

