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Abstract

Spreadsheet formula prediction has been an im-
portant program synthesis problem with many
real-world applications. Previous works typically
utilize input-output examples as the specification
for spreadsheet formula synthesis, where each
input-output pair simulates a separate row in the
spreadsheet. However, this formulation does not
fully capture the rich context in real-world spread-
sheets. First, spreadsheet data entries are orga-
nized as tables, thus rows and columns are not nec-
essarily independent from each other. In addition,
many spreadsheet tables include headers, which
provide high-level descriptions of the cell data.
However, previous synthesis approaches do not
consider headers as part of the specification. In
this work, we present the first approach for synthe-
sizing spreadsheet formulas from tabular context,
which includes both headers and semi-structured
tabular data. In particular, we propose SPREAD-
SHEETCODER, a BERT-based model architecture
to represent the tabular context in both row-based
and column-based formats. We train our model on
a large dataset of spreadsheets, and demonstrate
that SPREADSHEETCODER achieves top-1 predic-
tion accuracy of 42.51%, which is a considerable
improvement over baselines that do not employ
rich tabular context. Compared to the rule-based
system, SPREADSHEETCODER assists 82% more
users in composing formulas on Google Sheets.

1. Introduction
Spreadsheets are ubiquitous for data storage, with hundreds
of millions of users. Helping users write formulas in spread-
sheets is a powerful feature for data analysis. Although
spreadsheet formula languages are relatively simpler than
general-purpose programming languages for data manipula-
tion, writing spreadsheet formulas could still be tedious and
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error-prone for end users (Gulwani, 2011; Hermans et al.,
2012b; Cheung et al., 2016). Systems such as FlashFill (Gul-
wani, 2011; Gulwani et al., 2012) help end-users perform
string transformation tasks in spreadsheets using a few input-
output examples by automatically synthesizing a program in
a domain-specific language (DSL). Recently, several learn-
ing approaches based on different neural architectures have
been developed for learning such programs from examples,
and have demonstrated promising results (Parisotto et al.,
2017; Devlin et al., 2017; Vijayakumar et al., 2018).

All these previous works formalize the spreadsheet program
prediction problem as a programming by example task, with
the goal of synthesizing programs from a small number of
input-output examples. We argue that this choice engenders
three key limitations. First, this setup assumes that each
data row is independent, and each formula is executed on
data cells of the same row. However, real spreadsheets are
less structured than this. Data in spreadsheets is typically
organized as semi-structured tables, and cells in different
rows could be correlated. As shown in Figure 1, in the
same table, different data blocks could have different struc-
tures, and formulas can take cell values in other rows as
function arguments. Second, because spreadsheets are semi-
structured, they also contain rich metadata. In particular,
many spreadsheet tables include headers that provide high-
level descriptions of the data, which could provide important
clues for formula prediction. However, table headers are not
utilized in prior work. Finally, programming-by-example
methods output programs in a DSL, which is typically de-
signed to facilitate synthesis, and is much less flexible than
the language in which users write formulas. For example,
the FlashFill DSL only covers a subset of spreadsheet func-
tions for string processing, and it does not support rectangu-
lar ranges, a common feature of spreadsheet formulas. In
contrast, spreadsheet languages also support a wide variety
of functions for numerical calculation, while the argument
selection is more flexible and takes the spreadsheet table
structure into account. In total, these limitations can compro-
mise the applicability of such prior efforts to more diverse
real-world spreadsheets and to richer language functionality.

Instead, we propose synthesizing spreadsheet formulas with-
out an explicit specification. To predict a formula in a given
cell, the context of data and metadata is used as an implicit
(partial) specification of the desired program. For example
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(Figure 1b), if predicting a formula at the end of a column
of numbers labeled “Score”, and a cell in the same row con-
tains the text “Total”, this context might specify the user’s
intent to compute a column sum. Our problem brings several
new challenges compared to related work in programming
by example (Gulwani, 2011; Bunel et al., 2018; Balog et al.,
2017), semantic parsing (Popescu et al., 2003; Zhong et al.,
2017; Yu et al., 2018) and source code completion (Ray-
chev et al., 2014; Li et al., 2018; Svyatkovskiy et al., 2019).
Spreadsheet tables contain rich two-dimensional relational
structure and natural language metadata, but the rows do
not follow a fixed schema as in a relational database. Mean-
while, our tabular context is more ambiguous as the program
specification, and the spreadsheet language studied in this
work is more flexible than languages studied in the program
synthesis literature.

In this paper, we present SPREADSHEETCODER, a neu-
ral network architecture for spreadsheet formula prediction.
SPREADSHEETCODER encodes the spreadsheet context in
its table format, and generates the corresponding formula
in the target cell. A BERT-based encoder (Devlin et al.,
2019) computes an embedding vector for each input token,
incorporating the contextual information from nearby rows
and columns. The BERT encoder is initialized from the
weights pre-trained on English text corpora, which is bene-
ficial for encoding table headers. To handle cell references,
we propose a two-stage decoding process inspired by sketch
learning for program synthesis (Solar-Lezama, 2008; Mu-
rali et al., 2018; Dong & Lapata, 2018; Nye et al., 2019).
Our decoder first generates a formula sketch, which does
not include concrete cell references, and then predicts the
corresponding cell ranges to generate the complete formula.

For evaluation (Section 4), we construct a large-scale bench-
mark of spreadsheets publicly shared within our organiza-
tion. We show that SPREADSHEETCODER outperforms neu-
ral network approaches for programming by example (De-
vlin et al., 2017), and achieves 42.51% top-1 full-formula
accuracy, and 57.41% top-1 formula-sketch accuracy, both
of which are already high enough to be practically useful. In
particular, SPREADSHEETCODER assists 82% more users in
composing formulas than the rule-based system on Google
Sheets. Moreover, SPREADSHEETCODER can predict cell
ranges and around a hundred different spreadsheet operators,
which is much more flexible than DSLs used in prior works.
With various ablation experiments, we demonstrate that
both implicit specification from the context and text from
the headers are crucial for obtaining good performance.

2. Problem Setup
In this section, we discuss the setup of our spreadsheet
formula prediction problem. We first describe the input
specification, then introduce the language and representation
for spreadsheet formulas.

Input specification. We illustrate the input context in Fig-
ure 1. The input context consists of two parts: (a) context
surrounding the target cell (e.g., all cell values in rows 2–7,
and columns A–D, excluding cell D4 in Figure 1a), and (b)
the header row (e.g., row 1).

In contrast to prior programming-by-example ap-
proaches (Gulwani, 2011; Parisotto et al., 2017; Devlin
et al., 2017; Vijayakumar et al., 2018), our input specifi-
cation features (a) tabular input, rather than independent
rows as input-output examples, and (b) header information.
Tabular input is important for many cases where formulas
are executed on various input cells from different rows
and columns (Figure 1), and headers hold clues about the
purpose of a column as well as its intended type, e.g, the
header cell ”Score” in Figure 1b is likely to indicate that the
column data should be numbers.

Note that we do not include the intended output of the target
cell in our input specification, for three reasons. First, unlike
programming-by-example problems, we do not have multi-
ple independent input-output examples available from which
to induce a formula, so providing multiple input-output ex-
amples is not an option. Second, even for our single input
instance, the evaluated formula value may not be known
by the spreadsheet user yet. Finally, we tried including the
intended formula execution result in our specification, but
it did not improve the prediction accuracy beyond what the
contextual information alone allowed.

The spreadsheet language. Our model predicts formulas
written in the Google Sheets language1. Compared to the
domain-specific language defined in FlashFill, which fo-
cuses on string transformations, the spreadsheet language
supports a richer set of operators. Besides string manipu-
lation operators such as CONCATENATE, LOWER, etc., the
spreadsheet language also includes operators for numerical
calculations (e.g., SUM and AVERAGE), table lookups (e.g.,
VLOOKUP) and conditional statements (IF, IFS). As will
be discussed in Section 4, around a hundred different base
formula functions appear in our dataset, many more than
the operators defined in the FlashFill DSL.

In this work, we limit our problem to formulas with refer-
ences to local cells in a spreadsheet tab, thus we exclude
formulas with references to other tabs or spreadsheets, and
absolute cell ranges. As will be discussed in Section 3, we
also exclude formulas with relative cell references outside a
bounded range, i.e., farther than D = 10 rows and columns
in our evaluation. We consider improving the computational
efficiency to support larger D and enabling the synthesis of
formulas with more types of cell references as future work.

Formula representation. One of the key challenges in

1Google Sheets function list: https://support.
google.com/docs/table/25273?hl=en.
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Figure 1. Illustrative synthetic examples of our spreadsheet formula prediction setup. (a): The formula manipulates cell values in the same
row. (b): The formula is executed on the rows above. (c) and (d): Formulas involve cells in different rows and columns. The data value in
the target cell is excluded from the input. All of these formulas can be correctly predicted by our model.

formula representation is how to represent cell references,
especially ranges, which are prevalent in spreadsheet formu-
las. Naively using the absolute cell positions, e.g., A5, may
not be meaningful across different spreadsheets. Meanwhile,
a single spreadsheet can have millions of cells, thus the set
of possible ranges is very large.

To address this, we design a representation for formula
sketches inspired by prior work on sketch learning for
program synthesis (Solar-Lezama, 2008; Murali et al., 2018;
Dong & Lapata, 2018; Nye et al., 2019). A formula sketch
includes every token in the prefix representation of the parse
tree of the spreadsheet formula, except for cell references.
References, which can be either a single cell or a range
of cells, are replaced with a special placeholder RANGE
token. For example, the sketch of the formula in Figure 1a
is IF <= RANGE 1 "A" IF <= RANGE 2 "B"
IF <= RANGE 3 "C" IF <= RANGE 4 "D" "E"
$ENDSKETCH$, where $ENDSKETCH$ denotes the end
of the sketch. Notice that the sketch includes literals, such
as the constants 1 and "A".

To complete the formula representation, we design an in-
termediate representation for ranges, relative to the target
cell, as shown in Figure 2. For example, B5 in Figure 1c is
represented as $R$ R[0] C[1] $ENDR$ since it is on
the next column but the same row as the target cell A5, and
range C2:C6 in Figure 1b is represented as $R$ R[-5]
C[0] $SEP$ R[-1] C[0] $ENDR$. The special to-
kens $R$ and $ENDR$ start and conclude a concrete range,
respectively, and $SEP$ separates the beginning and end
(relative) references of a rectangular multi-cell range.

A complete spreadsheet formula includes both the sketch

<Range> ::= $R$ <R> <C> $ENDR$
| $R$ <R> <C> $SEP$ <R> <C> $ENDR$

<R> ::= R[-10] | R[-9] | ...R[9] | R[10]
<C> ::= C[-10] | C[-9] | ...C[9] | C[10]

Figure 2. The full grammar for range representation.
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Figure 3. An overview of our model architecture.
and any concrete ranges; e.g., the formula in Figure 1b
is represented as SUM RANGE $ENDSKETCH$ $R$
R[-5] C[0] $SEP$ R[-1] C[0] $ENDR$ EOF,
where EOF denotes the end of the formula. In Section 3.2,
we will discuss our two-stage decoding process, which
sequentially predicts the formula sketch and ranges.

3. SPREADSHEETCODER Model Architecture
In this section, we present our SPREADSHEETCODER model
architecture for spreadsheet formula prediction. We provide
an overview of our model design in Figure 3.

3.1. Tabular Context Encoder

Input representation. Our model input includes the sur-
rounding data values of the target cell as a table, and the first
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row is the header. When there is no header in the spread-
sheet table, we set the header row to be an empty sequence.
We include data values in cells that are at most D rows
and D columns away from the target cell, so that the input
dimension is (2D + 2)× (2D + 1), and we set D = 10 in
our experiments.

Row-based BERT encoder. We first use a BERT en-
coder (Devlin et al., 2019) to compute a row-based con-
textual embedding for each token in the target cell’s context.
Since our 2D + 1 + 1 rows contain many tokens and we
use a standard BERT encoder of 512-token inputs, we tile
our rows into bundles of N = 3 adjacent data rows, plus
the header row, which is included in every bundle. Then we
compute a token-wise BERT embedding for each bundle sep-
arately; the BERT weights are initialized from a pre-trained
checkpoint for English. Specifically, in our experiments
where D = 10, we concatenate all cell values for each row
i in the context into a token sequence Ri, which has length
L = 128 (we trim and pad as needed). We combine rows
in bundles Srb = [Hr, R3b−1, R3b, R3b+1], for b ∈ [−3, 3];
here Hr is the header row. We set the BERT segment IDs to
0 for the header tokens, and 1 for data tokens in each bundle.
There are 2D + 1 = 21 rows of context, so each of the 21
data rows is covered exactly once by the seven bundles. The
header row is assigned a different BERT representation in
each bundle. To obtain a single representation of the header
row, we average per token across the embeddings from all
of the bundles.

The number of data rows N = 3 is set to seek the balance
between the size of the tabular context fed into the encoder
and the computational efficiency. Since the BERT we use
takes 512 input tokens, we can feed at most L = 512/(N +
1) tokens per row. To generate formulas referring to cells
within D = 10 rows and columns, L = 128 is a good fit in
our evaluation. If we further decrease N and increase L, it
imposes extra computational overhead due to more forward
passes over BERT (21/N ).

Column-based BERT encoder. As shown in Figure 1b,
some formulas manipulate cells in the same column, in
which case a column-based representation may be more
desirable. Therefore, we also compute a column-based
contextual embedding for all context tokens. We perform
similar tiling as for the row-based BERT encoding, yielding
column bundles Scb for b ∈ [−3, 3]. Unlike with row-wise
tiling, where we include the header row Hr with every
bundle, for column-wise tiling we use the column of the
target cell, Hc = C0, as the “header column” in every
bundle. After obtaining all token embeddings from this
tiled computation by the BERT encoder, we discard token
embeddings of C0 in its role as header column, and only
use its regular token embeddings from the bundle Sc0.

Row-wise and column-wise convolution layers. Al-

though the output vectors of BERT encoders already contain
important contextual information, such as headers, nearby
rows and columns, they still do not fully embed the entire
input table as the context. To encode the context from more
distant rows and columns, we add a row-wise convolution
layer and a column-wise convolution layer on top of each
BERT encoder. Specifically, the row-wise convolution layer
has a kernel size of 1×L, and the column-wise convolution
layer has a kernel size of (2D+2)×1 for row-based BERT,
and (2D + 1)× 1 for column-based BERT. In this way, the
convolution layer aggregates across BERT embeddings from
different bundles, allowing the model to take longer range
dependencies into account. For each input token, let eb be
its BERT output vector, cr be the output of the row-wise
convolution layer, and cc be the output of the column-wise
convolution layer. The final embedding of each input token
is the concatenation of the BERT output and the output of
convolution layers, i.e., e = [cr + cc; eb].

3.2. Two-stage Formula Decoder

We train an LSTM (Hochreiter & Schmidhuber, 1997) de-
coder to generate the formula as a token sequence. Mean-
while, we use the standard attention mechanism (Bahdanau
et al., 2015) to compute two attention vectors, one over the
input header, and one over the cell data. We concatenate
these two attention vectors with the LSTM output, and feed
them to a fully-connected layer with the output dimension
|V |, where |V | is the vocabulary size of formula tokens.
Note that the token vocabularies are different for sketches
(formula operators, literals, and special tokens) and ranges
(relative row and column tokens and special range tokens).
The output token prediction is computed with the softmax.

As mentioned in Section 2, we design a two-stage de-
coding process, where the decoder first generates the for-
mula sketch, and then predicts the concrete ranges. In
the first stage, the sketch is predicted as a sequence of to-
kens by the LSTM, and the prediction terminates when
an $ENDSKETCH$ token is generated. Then in the second
stage, the range predictor sequentially generates formula
ranges corresponding to each RANGE token in the sketch,
and the prediction terminates when an EOF token is gen-
erated. Both sketch and range predictors share the same
LSTM, but with different output layers.

4. Experiments
We evaluate SPREADSHEETCODER on spreadsheet formula
prediction tasks in different settings. We first describe our
dataset, then introduce our experimental setup and discuss
the results 2.

2The code and data are available at https://github.
com/google-research/google-research/tree/
master/spreadsheet_coder.
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4.1. Dataset

We constructed our dataset from a corpus of Google Sheets
publicly shared within our organization. We collected 46K
Google Sheets with formulas, and split them into 42K for
training, 2.3K for validation, and 1.7K for testing.

Although in principle, our model could generate formulas us-
ing any operator in the spreadsheet language, some kinds of
value references are impossible to predict from local context,
thus we remove formulas with such values from our dataset.
Specifically, we exclude formulas that use the HYPERLINK
function with a literal URL, since those are merely ”stylistic”
formulas that perform no computation beyond presenting
a URL as a clickable link. As discussed in Section 2, we
also filtered out formulas with cross-references from other
tabs or spreadsheets, with cell references farther than 10
rows or columns from the target cell in either direction, or
with absolute cell ranges. Finally, our dataset includes 770K
training samples, 42K for validation, and 34K for testing.

About the length distribution of target spreadsheet formulas,
about 32% formulas have sketch lengths of 2, 53% formulas
have sketch lengths of 3, 11% formulas have sketch lengths
of 4-5, and 4% formulas have sketch lengths of at least 6.
As discussed in Section 2, even if the formula sketches
are mostly short, it is still challenging to generate the full
formulas correctly. For example, the formula in Figure 1b
is represented as SUM RANGE $ENDSKETCH$ $R$
R[-5] C[0] $SEP$ R[-1] C[0] $ENDR$ EOF,
which has a sketch length of 2, but the full formula length
is 10 if excluding the EOF token for length calculation. In
total, around a hundred operators are covered in our output
vocabulary, including 82 spreadsheet-specific functions,
and other general-purpose numerical operators (e.g., +, -).
We defer more details about dataset construction process
and dataset statistics to Appendix C.

By default, each sample includes both the header row and
surrounding data values of relative cell positions within
[−10, 10]. Note that we do not include the data of the target
cell, and we leave an empty value there. We perform the
header detection according to the spreadsheet table format,
i.e., we recognize the first row of a table as the header when
it is frozen. Though some spreadsheet tables may include
header-like descriptions in the leftmost column, e.g., “Total
Score” in Figure 1a, we only extract headers as a row, to
ensure the precision of header detection. In Section 4.3, we
also discuss settings when the model input does not include
headers, and when we only include a few data rows above
the target cell as the input context.

4.2. Evaluation Setup

Metrics. We evaluate the following metrics: (1) Formula
accuracy: the percentage of predicted formulas that are the
same as the ground truth. (2) Sketch accuracy: the percent-

age of predictions with the same formula sketches as the
ground truth. As discussed in Section 2, formula sketches
do not include ranges, but include both functions and liter-
als. (3) Range accuracy: the percentage of predictions with
the same ranges as the ground truth. Note that the order of
predicted ranges should also be the same as the ground truth.
In addition, the model may predict the ranges correctly even
if the sketch prediction is wrong, as shown in Figure 5b.

Note that our formula accuracy metric could be an underesti-
mate of the semantic equivalence, because different spread-
sheet formulas may be semantically equivalent. For exam-
ple, to predict arguments for SUM and MULTIPLY, different
orders of the cell ranges have the same meaning. However,
it is hard to systematically define the semantic equivalence
in our evaluation, because we aim to support a wide range
of operators in the spreadsheet language. Some existing
works on program synthesis have evaluated the semantic
equivalence based on the execution results (Devlin et al.,
2017; Bunel et al., 2018; Sun et al., 2018). However, it is
hard to sample different input spreadsheets requiring the
same formula, thus evaluating the execution accuracy is
challenging. Therefore, we still focus on our current met-
ric to measure the formula accuracy, where we compare
whether the predicted formula is exactly the same as the
single ground truth formula included in the spreadsheet.

Model details. For models with the BERT encoder (De-
vlin et al., 2019), including our full SPREADSHEETCODER
model, we use the BERT-Medium architecture, and initial-
ize from the English pre-trained model by default.3 We
compared our full model with several variants:

(1) Different encoder architectures. i) Using a single BERT
encoder, either row-based or column-based; ii) removing
convolution layers, where the BERT output is directly fed
into the decoder.

(2) Different decoding approaches. We compare our two-
stage decoding discussed in Section 3.2 to a simpler model
that uses the same predictor for both the sketch and ranges,
with a single joint output vocabulary for both.

(3) Different model initialization. When not using the pre-
trained BERT model weights, we randomly initialize BERT
encoders. This tests whether pre-training on generic natural
language text is useful for our spreadsheet data.

We compare to previous approaches for related program
synthesis tasks. First, we evaluate RobustFill, which demon-
strates the state-of-the-art performance on string manipu-
lation tasks for Excel spreadsheets (Devlin et al., 2017).
Specifically, RobustFill encodes the cell context as indepen-
dent rows, rather than a 2D table as in SpreadsheetCoder.

3We downloaded the pre-trained BERT from: https://
github.com/google-research/bert.
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Afterwards, at each decoding step, a shared LSTM decoder
generates a hidden state per data row, which are then fed
into a max pooling layer. Finally, the pooled hidden state
is fed into a fully-connected layer to predict the formula
token. We trained two variants of RobustFill on our dataset:
one encodes each row independently, and another encodes
each column independently, denoted as row-based Robust-
Fill and column-based RobustFill respectively. In addition,
we compared to a baseline that does not utilize any input
context, thus the model only includes the LSTM decoder,
similar to prior work on language modeling (Sundermeyer
et al., 2012; Karpathy et al., 2015).

4.3. Results

In this section, we present the results using different variants
of spreadsheet contexts as the model inputs. We perform
a beam search during the inference time. Empirically, we
find that results with different beam sizes (2, 4, 8, 16, 32,
64, 128) are similar, i.e., the accuracies vary within 0.3%.
Therefore, we set the beam size to be 64 for all settings.

4.3.1. RESULTS WITH THE FULL INPUT CONTEXT

Using both headers and the full surrounding data cell values
as the model input, we present the formula accuracy in Ta-
ble 1, where top-k accuracy measures how often the ground
truth appears in the top k predictions using beam search.
Compared to the model without the input context, all other
models are able to use the contextual data to provide more
accurate predictions. In particular, our full model achieves
over 40% top-1 full formula prediction accuracy, which is 4
times as high as the model without context. We also observe
that the full SpreadsheetCoder model has much better ac-
curacy than either of the RobustFill models, demonstrating
that our model is more capable of leveraging the implicit
specification provided by the tabular context.

Different encoder architectures. Appropriately encoding
the input context is important. Comparing with RobustFill
models, we observe that it is beneficial to model the de-
pendency among different rows and columns, instead of
encoding each row or column independently. Meanwhile,
adding convolution layers brings additional performance
gain, because it enables the representation of each input
token to aggregate broader contextual information beyond a
few nearby rows or columns, i.e., 3 for our BERT encoders
as discussed in Section 3.1. Finally, although models repre-
senting the input context as column-based tables generally
perform worse than those using row-based tables, including
both row-based and column-based encoders improves the
overall accuracies by 2–3 percentage points. Note that the
improvement is not due to the larger model size: to test this,
we trained row-based and column-based BERT models with
the larger BERT-base and BERT-large architectures, but the
results were no better, while taking longer to train. In addi-

tion, initializing from pre-trained BERT encoders increases
the formula accuracy by around 10 percentage points, sug-
gesting that although spreadsheet headers are generally short
natural language phrases, pre-training on a large-scale text
corpus with much more complex text still enables the model
to better understand the spreadsheet context.

Breakdown analysis of sketch and range prediction. We
present the sketch and range accuracies in Table 2. On the
one hand, sketch accuracies are generally much higher than
range accuracies, since formulas are more likely to share
common sketches with similar spreadsheet context, while
range prediction requires a more careful investigation of
the table structure. On the other hand, sketch prediction
becomes more challenging when literals are included. In
Figure 5a, we present a prediction with the correct sketch
but the wrong range. Specifically, the model could easily
infer that the formula should call a SUM function, since it is a
common prediction given the input token “Total”. However,
the model wrongly selects all cells above as the function
argument, and ignores the fact that the cell B5 is already the
sum of cells B2–B4, indicated by the text “Total price” in
cell A5. Figure 5b shows a prediction with the correct range
but the wrong sketch, where the predicted formula misses
a “/” as an argument to the string concatenation operator
“&”. Two-stage decoding disentangles the generation of
sketches and ranges, so that the two predictors could focus
on addressing different difficulties in formula prediction,
and this mechanism improves the overall accuracy.

Prediction on formulas with different sketch lengths.
We present the top-1 formula accuracy on formulas with
different sketch lengths in Figure 4. Note that we exclude
the $ENDSKETCH$ token from length calculation. First, all
models achieve higher performance on formulas with sketch
lengths of 2–3 than longer formulas. It is harder to make
exactly the same prediction as the ground truth when the for-
mula becomes longer, especially given that the input context
is often an ambiguous specification for formula prediction.
Fortunately, users typically do not need to write complicated
formulas for spreadsheet data manipulation. Specifically,
85% of our collected formulas have sketch lengths of 2–3.
Despite the performance degradation, our full model consis-
tently performs better than other models on formulas with
different sketch lengths.

4.3.2. THE EFFECT OF HEADER INFORMATION

In this section, we evaluate the effect of including the header
row as the model input, which usually provides a short
description of the table in natural language. For all models,
we remove the headers from the context by replacing the
header tokens with empty values. Thus the models can only
use surrounding data cells as the spreadsheet context.

In Table 3, we observe a notable accuracy drop compared
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Table 1. Formula accuracy on the test set. “−” means the corre-
sponding component is removed from our full model.

Approach Top-1 Top-5 Top-10

Full Model 42.51% 54.41% 58.57%
− Column-based BERT 39.42% 51.68% 56.50%
− Row-based BERT 20.37% 40.87% 48.37%
− Convolution layers 38.43% 51.31% 55.87%
− Two-stage decoding 41.12% 53.57% 57.95%
− Pretraining 31.51% 42.64% 49.77%

Row-based RobustFill 31.14% 40.09% 47.10%
Column-based RobustFill 20.65% 39.69% 46.96%
No context 10.56% 23.27% 31.96%

Figure 4. Top-1 formula accuracies for different sketch lengths.

to Table 1, indicating that leveraging headers is critical. Fig-
ure 7a shows an example that can be correctly predicted
by our full model, but is wrongly predicted by the model
without input headers. We can observe that without the
header “Average”, it is much harder to figure out that the
formula should call the AVERAGE function instead of a divi-
sion. Interestingly, without input headers, using row-based
or column-based table representation no longer makes much
difference. However, our tabular input context encoders
still perform better than RobustFill models, suggesting the
importance of modeling the dependency among different
rows and columns. In addition, initializing from pre-trained
BERT model weights does not improve the results, and even
slightly hurts the performance. The main reason is that
the cell data values are mostly numeric and string literals.
Breakdown results are deferred to Appendix B.

4.3.3. RESULTS IN THE FLASHFILL-LIKE SETTING

In this section, we conduct experiments in the FlashFill-like
setting, where formulas are always executed on cells in the
same row. In total, 2.5K formulas in the test set only include
cells with the relative row position R[0], which constitute
around 73% of the test set. More details are in Appendix D.

In Figure 6, we present the top-1 formula accuracies with
different numbers of input data rows. We observe that even
for spreadsheet formulas that only refer to cells in the same

Table 2. Sketch and range accuracy on the test set.
(a) Sketch accuracy.

Approach Top-1 Top-5 Top-10

Full Model 57.41% 72.04% 78.52%
− Column-based BERT 55.50% 70.88% 77.73%
− Row-based BERT 27.49% 61.95% 73.95%
− Convolution layers 53.68% 69.38% 75.67%
− Two-stage decoding 56.47% 72.02% 78.30%
− Pretraining 41.26% 64.67% 76.36%

Row-based RobustFill 40.23% 61.50% 72.20%
Column-based RobustFill 29.50% 59.97% 71.31%
No context 25.19% 47.08% 52.70%

(b) Range accuracy.

Approach Top-1 Top-5 Top-10

Full Model 46.93% 59.60% 63.51%
− Column-based BERT 43.60% 57.12% 62.27%
− Row-based BERT 22.57% 47.84% 55.29%
− Convolution layers 42.84% 56.64% 61.03%
− Two-stage decoding 44.59% 58.52% 62.48%
− Pretraining 36.03% 49.85% 54.71%

Row-based RobustFill 33.88% 48.16% 54.83%
Column-based RobustFill 23.97% 47.09% 52.75%
No context 11.80% 25.54% 38.07%

row, our models with tabular input encoders still perform
better. In particular, with the increase of the number of in-
put data rows, the accuracy of the RobustFill model does not
show much improvement, while the accuracies of the other
two models increase considerably, especially our full model.
This demonstrates that our model could better utilize the
available cell data context for prediction. Figure 7b shows a
formula that can be correctly predicted by our model when
the full input context is given, but is wrongly predicted when
the input only contains the header row and one data row.
This example shows that understanding the cell data is espe-
cially important when the header is not informative enough.
Notice that including only a few input rows or columns does
not fit our encoder design well, since our BERT encoders
simultaneously embed 3 data rows at a time, while the Ro-
bustFill model independently encodes each row by design.
This could be the main reason why models with BERT-based
encoders may perform worse than RobustFill when less than
3 data rows are presented. In addition, including headers
still consistently provides a significant performance gain.

4.3.4. RESULTS ON PUBLIC EXCEL SPREADSHEETS

Finally, we evaluate SPREADSHEETCODER on the Enron
corpus 4, which includes over 17K Excel Spreadsheets ex-
tracted from the Enron email corpus (Klimt & Yang, 2004;
Hermans & Murphy-Hill, 2015). We preprocess the Enron
corpus in the same way as our Google Sheets corpus, and

4The raw spreadsheet corpus is here: https://github.
com/SheetJS/enron_xls.
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Target cell: B7

Ground truth formula:
SUM RANGE $ENDSKETCH$
$R$ R[-2] C[0] $SEP$
R[-1] C[0] $ENDR$ $EOF$

Model prediction:
SUM RANGE $ENDSKETCH$
$R$ R[-5] C[0] $SEP$
R[-1] C[0] $ENDR$ $EOF$

(a)

Ground truth formula:
RANGE & “/” & RANGE $ENDSKETCH$ 
$R$ R[0] C[-2] $ENDR$ $R$ R[0] C[-1] $ENDR$ EOF

Model prediction:
RANGE & RANGE $ENDSKETCH$ 
$R$ R[0] C[-2] $ENDR$ $R$ R[0] C[-1] $ENDR$ EOF

(b)

Figure 5. Examples of wrong formula predictions by our full
model. (a) The sketch prediction is correct, but the range is wrong.
(b) The range prediction is correct, but the sketch is wrong. These
are synthetic examples for illustrative purposes.

our final dataset includes 178K samples in the training set,
41K samples in the validation set, and 33K samples in the
validation set. About 55% formulas have sketch lengths
of 2, 18% formulas have sketch lengths of 3, 13% formu-
las have sketch lengths of 4-5, 9% formulas have sketch
lengths of 6-7, and 5% formulas have sketch lengths of at
least 8. The formulas utilize 13 spreadsheet functions, and
4 general-purpose numerical operators (i.e., +, -, *, and /).
Compared to our Google Sheets corpus, the Enron dataset is
smaller and the formulas include fewer types of spreadsheet
functions, but it contain more formulas with long sketches.
More details about the dataset are deferred to Appendix C.

On the Enron test set, SPREADSHEETCODER achieves
29.8% top-1 accuracy, 41.8% top-5 accuracy, and 48.5%
top-10 accuracy. These numbers are lower than the results
on our Google Sheets corpus. When investigating into the
model predictions, we observe that the main reason is due to
the spreadsheet format difference. Specifically, because En-
ron spreadsheets are in Excel, while our data preprocessing
pipeline is implemented for Google Sheets, we import En-
ron spreadsheets into Google Sheets for data preprocessing.
Therefore, a larger proportion of table headers are not prop-
erly detected. However, when comparing to the prediction
results without headers, as shown in Table 3, the accuracies

Table 3. Formula accuracy on the test set, excluding headers in the
context. Corresponding results with headers are in Table 1.

Approach Top-1 Top-5 Top-10

Full Model 20.47% 40.23% 47.40%
− Column-based BERT 20.63% 40.40% 48.70%
− Row-based BERT 20.38% 40.11% 47.88%
− Pretraining 20.94% 40.64% 48.51%

Row-based RobustFill 19.02% 33.60% 37.38%
Column-based RobustFill 17.64% 30.45% 36.79%
No context 10.56% 23.27% 31.96%

Figure 6. Top-1 formula accuracy in the FlashFill-like setting, with
different number of input rows.

on the Enron test set are still better.

5. Related Work
In this section, we present a high-level overview of the
related work, and we defer a more in-depth discussion to
Appendix A. Program synthesis has been a long-standing
challenge, and various types of specifications have been
discussed, including input-output examples (Gulwani et al.,
2012; Balog et al., 2017; Bunel et al., 2018; Bavishi et al.,
2019; Shin et al., 2018; Chen et al., 2019), natural language
descriptions (Gulwani & Marron, 2014; Yu et al., 2018; Yin
et al., 2018; Lin et al., 2018; Liang et al., 2018; Wang et al.,
2020), and images (Wu et al., 2017; Liu & Wu, 2019; Sun
et al., 2018). In particular, the FlashFill benchmark (Gul-
wani et al., 2012) is the most related to our task, and their
goal is to generate string transformation programs to manip-
ulate the Excel spreadsheet data, given input-output exam-
ples as the specification. Various neural network approaches
have been proposed for FlashFill (Parisotto et al., 2017; De-
vlin et al., 2017; Vijayakumar et al., 2018). On the other
hand, Nlyze (Gulwani & Marron, 2014) translates natural
language specifications to programs in an SQL-like DSL
for spreadsheet data manipulation; and Autopandas (Bav-
ishi et al., 2019) synthesizes dataframe transformation func-
tions implemented with the Python Pandas library, given
input-output dataframe examples. The spreadsheet formula
prediction task in our work considers the semi-structured
tabular spreadsheet context as the specification, rather than
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Ground truth formula:
AVERAGE RANGE $ENDSKETCH$ 
$R$ R[0] C[-3] $SEP$ R[0] C[-1] $ENDR$ EOF

Prediction of the model excluding headers:
/ RANGE RANGE $ENDSKETCH$ 
$R$ R[0] C[-2] $ENDR$ $R$ R[0] C[-1] $ENDR$ EOF

(a)

Ground truth formula:
/ RANGE $ENDSKETCH$ 
$R$ R[0] C[-3] $SEP$ R[0] C[-1] $ENDR$ EOF

Prediction of the model without the full data context:
* RANGE RANGE $ENDSKETCH$ 
$R$ R[0] C[-2] $ENDR$ $R$ R[0] C[-1] $ENDR$ EOF

(b)

Figure 7. Examples of formulas that are correctly predicted by
our full model with the full context, but wrongly predicted with
missing context. (a) The wrong prediction when the model input
does not include headers. Note that the model with headers predicts
it correctly even if only one data row is provided. (b) The wrong
prediction when the model input only includes headers and one
data row. These are synthetic examples for illustrative purposes.

standardized input-output examples or natural language de-
scriptions. Therefore, our formula specifications are more
ambiguous and diverse. Furthermore, we show that includ-
ing the header information is a key factor to improving the
formula prediction performance.

In terms of the model input format, our spreadsheet for-
mula prediction task is related to existing benchmarks on
semantic parsing over a tabular database (Iyyer et al., 2017;
Zhong et al., 2017; Yu et al., 2018). There are two key dif-
ferences between these tasks and ours. First, their program
specification contains a natural language question, while
our work predicts spreadsheet formulas based on the tabular
context only. Therefore, our input specification is much
more ambiguous. Meanwhile, our spreadsheet tables are
typically less structured than the database tables. As shown
in Figure 1, spreadsheet tables do not necessarily satisfy a
consistent row-based schema, and data cell values may be
dependent on cells from other rows.

Our tabular context encoder is related to prior works on tab-
ular BERT models, including TAPAS (Herzig et al., 2020),
TaBERT (Yin et al., 2020), and Table-BERT (Chen et al.,
2020). Our encoder design differs from these works in the

following ways. First, these models are designed for ques-
tion answering (Herzig et al., 2020; Yin et al., 2020) or fact
verification (Chen et al., 2020), thus their inputs are the
concatenation of a natural language question/statement and
a table. In contrast, our model input only contains a spread-
sheet table. Second, both TAPAS and Table-BERT require
that the maximum table size is 512 tokens, which is not
enough for our problem. SpreadsheetCoder encodes larger
tabular input by tiling multiple rows/columns in multiple
forward passes over BERT, and then doing the convolution
to capture broader context. TaBERT independently embeds
each table row with the question, then applies an attention
mechanism over other tokens in the same column but differ-
ent rows. This is similar to our row-based BERT without the
row-wise convolution. As shown in Table 1, this alternative
underperforms our full model.

Our spreadsheet formula prediction problem is also related
to code completion tasks (Raychev et al., 2014; Li et al.,
2018; Svyatkovskiy et al., 2019; 2020; Svyatkovskoy et al.,
2020). Specifically, the goal of code completion tasks is to
synthesize the subsequent program tokens given the code
context, while we aim to generate the formula in the cell
with the missing value to complete the spreadsheet. How-
ever, instead of providing a token sequence to represent
the code context, our data context is a semi-structured ta-
ble, where data values in different cells are connected in a
two-dimensional space.

6. Conclusion
We presented the first technique to synthesize spreadsheet
formulas given a tabular context, including both head-
ers and cell values. In particular, we develop SPREAD-
SHEETCODER, a BERT-based model to capture the two-
dimensional relational structure of the spreadsheet context,
which are typically semi-structured tables. We demonstrate
that incorporating the table headers significantly facilitates
the prediction. Furthermore, modeling the dependency
among cells of different rows and columns is important
for generating formulas in real-world spreadsheets with di-
verse table structures. Compared to the rule-based system
on Google Sheets, SPREADSHEETCODER assists 82% more
users in composing formulas.

There are a number of promising directions for future re-
search about spreadsheet applications. First, developing a
paradigm for pre-training on spreadsheet data could enable
the encoder to be more specialized for spreadsheet applica-
tions. Second, we could infer more fine-grained knowledge
of the table structure from the spreadsheet format informa-
tion, such as colors and fonts, which could be utilized to
develop more advanced encoder architectures. Finally, we
could also extend our approach to support more spreadsheet
applications, such as bug detection and clone detection.
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