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ABSTRACT

Automatic correction of programs is a challenging problem with nu-
merous real world applications in security, verification, and educa-
tion. One application that is becoming increasingly important is the
correction of student submissions in online courses for providing
feedback. Most existing program repair techniques analyze Abstract
Syntax Trees (ASTs) of programs, which are unfortunately unavail-
able for programs with syntax errors. In this paper, we propose a
novel Neuro-symbolic approach that combines neural networks
with constraint-based reasoning. Specifically, our method first uses
a Recurrent Neural Network (RNN) to perform syntax repairs for
the buggy programs; subsequently, the resulting syntactically-fixed
programs are repaired using constraint-based techniques to ensure
functional correctness. The RNNs are trained using a corpus of syn-
tactically correct submissions for a given programming assignment,
and are then queried to fix syntax errors in an incorrect program-
ming submission by replacing or inserting the predicted tokens at
the error location. We evaluate our technique on a dataset com-
prising of over 14,500 student submissions with syntax errors. Our
method is able to repair syntax errors in 60% (8689) of submissions,
and finds functionally correct repairs for 23.8% (3455) submissions.
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1 INTRODUCTION

The increasing importance of computing has resulted in a dramatic
growth in the number of students interested in learning program-
ming. Initiatives such as edX and Coursera attempt to meet this
demand by providing Massive Open Online Courses (MOOCs) that
are easily accessible to students worldwide. While MOOCs have nu-
merous benefits, their effectiveness over the traditional classroom
setting is limited by the challenge of providing quality feedback to
students on their submissions to open-response programming as-
signments. We present a learning based technique to automatically
generate corrections for student submissions that in turn can be
used to generate feedback.

Most existing systems for automated feedback generation are
based on the functional correctness and style characteristics of
student programs. For instance, the AutoProf [27] system uses
constraint-based synthesis to find the minimum number of changes
to an incorrect student submission that would transform it to be-
come functionally equivalent to a reference teacher implementa-
tion. In contrast, the Codewebs system [17] adopts a search based
approach where feedback generated by teachers on a handful of
submissions is propagated to provide feedback on thousands of
submissions by querying the dataset using code phrases. Codewebs
allows querying the dataset of student submissions using "code
phrases", which are subgraphs of AST in the form of subtrees,
subforests, and contexts. These systems assume the availability
of program ASTs, which unfortunately do not exist for programs
with syntax errors. As an example, almost 20% of submissions in a
dataset we obtained from an introductory Python course on edX
had syntax errors. In this paper, we propose a novel Neuro-symbolic
program correction approach that overcomes this problem by us-
ing a hybrid approach that combines deep neural networks with
constraint-based reasoning. While the neural networks are able to
correct syntactic problems with student submissions, the constraint-
based synthesis techniques allow for finding semantic corrections.
A particularly interesting aspect enabled by our hybrid approach is
that of generating the correct usage of infrequent variable names
in a student program.

There are two key steps in our approach. For a given program-
ming problem, we first use the set of student submissions without
syntax errors to learn a model of token sequences, which is then
used to hypothesize possible fixes to syntax errors in a student
submission. Our system enumerates over the set of possible mod-
ifications to the incorrect program in an ordered fashion to com-
pute the syntax error fixes. We use a Recurrent Neural Network
(RNN) [25] to learn the token sequence model that can learn large
contextual dependencies between tokens. In the second step, we
use constraint-based program synthesis (the Sketch solver [28])
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to find minimal changes to the student program such that it be-
comes functionally equivalent to a reference implementation. Note
that the small size of student programs in this domain of intro-
ductory programming (around 10-20 LOC) allows for performing
sophisticated search-based correction techniques.

Our approach is inspired from the recent pioneering work on
learning probabilistic models of source code from a large repository
of code for many different applications [1–4, 13, 19, 24]. Hindle et
al. [13] learn an n-gram language model to capture the repetitive-
ness present in a code corpora and show that n-gram models are
effective at capturing the local regularities. They used this model
for suggesting next tokens that was already quite effective as com-
pared to the type-based state-of-the-art IDE suggestions. Nguyen
et al. [19] enhanced this model for code auto-completion to also
include semantic knowledge about the tokens (such as types) and
the scope and dependencies amongst the tokens to consider global
relationships amongst them. The Naturalize framework [3] learns
an n-gram language model for learning coding conventions and
suggesting changes to increase the stylistic consistency of the code.
More recently, some other probabilistic models such as conditional
random fields and log bilinear context models have been developed
for suggesting names for variables, methods, and classes [4, 24].
We also learn a language model to encode the set of valid token
sequences, but our approach differs from previous approaches in
four key ways: i) our application of using a language model learnt
from syntactically correct programs to fix syntax errors is novel,
ii) since we cannot obtain the AST of the programs with syntax
errors, many of these techniques that use the AST information
for learning the language model are not applicable, iii) we learn a
recurrent neural network (RNN) that can capture more complex
dependencies between tokens than the n-gram or logbilinear neural
networks, and finally iv) instead of learning one language model
for the complete code corpus, we learn individual RNN models for
different programming assignments so that we can generate more
precise repairs for different problems.

We evaluate our system on student solutions obtained from 9
programming problems taken from the Intro to Programming class
(6.00x) offered on edX. We consider 74818 student submissions
in total, out of which 14526 (19.4%) submissions have syntax er-
rors. Our technique can find repairs for fixing syntax errors for
59.8% (8689/14526) of these submissions and finds semantic repairs
for 23.8% (3455) of the submissions. To summarize, the paper makes
the following key contributions:

• We formalize the problem of syntax corrections in programs
as a token sequence prediction problem using the recurrent
neural networks (RNN).

• We present the SynFix algorithm that uses the predicted
token sequences for finding syntax repairs using a search
procedure. The algorithm then uses constraint-based syn-
thesis to find minimal repairs for semantic correctness.

• We evaluate the effectiveness of our system on more than
14, 500 student submissions.

2 MOTIVATING EXAMPLES

In this section, we present a sample of different types of corrections
our system is able to generate as shown in Figure 2. The example

programs, shown in Figure 2, come from the student submissions
for different problems taken from the Introduction to Python Pro-
gramming MOOC (6.00x) on edX.

Our syntax correction algorithm considers two types of parsing
errors in Python programs: i) syntax errors, and ii) indentation er-
rors. It uses the offset information provided by the Python compiler
to locate the potential error locations, and then uses the program to-
kens from the beginning of the function to the error location as the
prefix token sequence to query the RNN model to predict the cor-
recting token sequences. The algorithm enumerates subsequences
of predicted sequence in a ranked order to generate proposals for
insertion or replacements at the error location. However, there are
many cases such as the ones shown in Figure 2(c) where the com-
piler is not able to accurately locate the exact offset location for
the syntax error. In such cases, our algorithm ignores the tokens
present in the error line and considers the prefix ending at the
previous line. Using the prefix token sequence, the algorithm uses
a neural network to perform the prediction of next k tokens that
are most likely to follow the prefix sequence, which are then either
inserted at the error location or are used to replace the original
token sequence.

A sample of repairs generated by our algorithm (emphasized in
red) based on inserting the predicted tokens at the offset location
is shown in Figure 2(a). The kinds of errors in this class typically
include inserting unbalanced parenthesis, completing partial ex-
pressions (such as exp- to exp-1), adding syntactic tokens such as
: after if and else, etc. Some example syntax errors that require
replacing the original tokens in the incorrect program with the
predicted tokens are shown in Figure 2(b). These errors typically
include replacing an incorrect operator with another operator (such
as replacing =with *, = in comparisons with ==), deleting additional
mismatched parenthesis etc.

Since the compiler might not always accurately identify the
error location, our system predicts the complete replacement line
for such cases as shown in Figure 2(c). These errors typically include
wrong spelling of keywords (e.g. retrun instead of return), wrong
expression for the return statement etc. For fixing such syntax
errors, our algorithm generates the prefix token sequence that ends
at the last token of the line previous to the error line. It then queries
the model to predict a token sequence that ends at a new line, and
replaces the error line completely with the predicted line. A sample
of indentation errors is shown in Figure 2(d) and submissions that
require multiple fixes are shown in Figure 2(e). After fixing a syntax
error, the algorithm iteratively calls itself to fix other errors.

The fixes to syntax errors in the code may or may not correspond
to the correct semantic fix, i.e. the fixed program may not compute
the desired result. An end-to-end example of semantic repair is
shown in Figure 1. Since the Python compiler does not predict the
correct location for syntax error for this case, the RNN model uses
the previous line method to insert a new line while a%t != 0 or b%t
!=0 as the suggested fix. This results in fixing the syntax error, but
introduces an unknown variable t. In the second phase, our system
uses an error model consisting of a set of rewrite rules to modify
different program expressions, and then uses the Sketch solver to
efficiently search over this large space to compute minimal modi-
fications to program such that it becomes functionally equivalent
with respect to a teacher’s implementation. For this example, we
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def gcdIter(a,b):
m=min(a,b)
while a%m!=0:

or b%m!=0:
m = m + 1

return m

def gcdIter(a,b):
m=min(a,b)
while a%t!=0

or b%t!=0:
m = m + 1

return m

def gcdIter(a,b): 
 m = min({a|m|b},{b|m|a}) 
 while {a|m|b}%{t|a|m|b}!=0 
     or {b|m|a}%{t|a|b|m}!=0: 
  m = {m|a|b} {+|-} 1 
  return m

def gcdIter(a,b): 
  m=min(a,b) 
  while a%m!=0                     or b%m!=0: 
    m = m - 1 
  return m

Sketch

Figure 1: An end-to-end correction example: the RNN model first fixes the syntax error by replacing line 3 but introduces

an unknown variable t. The second phase applies an error model to introduce various replacement choices and uses Sketch

to find minimal repair for the input program to be functionally correct. An expression of the form {a|b|c} denotes a choice

expression, where the Sketch compiler can choose any expression amongst them. The first option in the choice expression

denotes the default expression with cost 0, while all other options result in a cost of 1.

def gcdRecur(a, b):
if b == 0:

return a
x,y=max(a,b),min(a,b)
return gcdRecur(x−y,y)

def recPower(b, e):
if e <= 0:

return 1
return b ∗ recPower(b, e−1)

(a) SyntaxError - Insert Token

def isWordGuessed(sWord, lGuess):
result=True
for s in sWord:

if ! not(s in lGuess):
result=False

return result

def rP(b, e):
t = b
if(e==0):

return t
else:

t ∗= b

return t+rP(b,e− = 11) )

(b) SyntaxError - Replace Token

def recPower(b, e):
f e == 1:

if e == 1:

return b
return b ∗ recPower(b, e − 1)

def recPower(b, e):
if e == 1:

return b
if e > 1:

return e -= 1

return b * recPower(b, e-1)

(c) SyntaxError - Previous Line Insert

def recPower(b, e):
if e == 0:
return 1

return 1

return b ∗ recPower(b,e−1)

def recPower(b, e):
x = b
while(e > 0):

x ∗= b

-= 1

e -= 1

return b

(d) Indentation Error - Insert Token

def recPower(b, e):
if e == 1:
return e

return b + recPower(b, e− - 1)

def gcdIter(a, b):
mi=min(a,b)
while a%mi!=0 : or b%mi!=0:

mi −=1
return mi

(e) Multiple Errors - Combination of Insert, Replace, Previous Line

Figure 2: A sample of example syntax fixes generated by the RNN model for the student submissions with syntax errors. The

fix suggestions are emphasized in red font, whereas the expressions removed are emphasized in blue with a frame box.

use a simple error model for brevity that can replace a variable in
assignments and conditionals with any other variable, and replace
an operator with + or -. Sketch is then able to identify the correct
semantic fix that replaces t with mi and changes + to - in line 4.

3 NEURO-SYMBOLIC REPAIR ALGORITHM

An overview of the workflow of our system is shown in Figure 3.
For a given programming problem, we first use the set of all syn-
tactically correct submissions to learn a generative token sequence
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SynFix

Syntactically Correct 

Student Submissions

Student Submission 

with Syntax Errors
Corrected

Program

Learnt 

Model

Sketch

Error 

Model

Figure 3: An overview of the system workflow.

model using an RNN [30]. The sequencemodels are problem-specific
and we learn different models for different problems. We then use
the SynFix algorithm to find small syntactic corrections to a student
submission by modifying the submission with the token sequences
predicted by the learnt model. Finally, we use the Sketch [28] syn-
thesis system to find minimal modifications (defined by rewrite
rules) to the syntactically-repaired program such that the program
becomes functionally correct with respect to a reference imple-
mentation. We now briefly describe the three key phases in our
workflow: i) the training phase, and ii) the SynFix algorithm, and
iii) Sketch-based synthesis.

3.1 RNN-based Language Model

The Recurrent Neural Network (RNN) is a generalization of feedfor-
ward networks that can encode sequences of variable length and
RNNs have been shown to be effective in many domains such as
machine translation [31] and speech recognition [7]. We first use
the syntactically correct student submissions to obtain the set of
all valid token sequences and then use a threshold frequency value
to decide whether to relabel a token to a general IDENT token for
handling rarely used tokens (such as infrequent variable/method
names). A token is encoded into a fixed-length one-hot vector,
where the size of the vector is equal to the size of the training vo-
cabulary. In the training phase, we provide the token sequences to
the input layer of the RNN and the input token sequence shifted left
by 1 as the target token sequence to the output layer as shown in
Figure 4(a). After learning the network from the set of syntactically
correct token sequences, we use the model to predict next token
sequences given a prefix of the token sequence to the input layer
as shown in Figure 4(b). The first output token is predicted at the
output layer using the input prefix sequence. For predicting the
next output token, the predicted token is used as the next input
token in the input layer as shown in the figure.

We first present a brief overview of the computational model
of a simple RNN with a single hidden layer. Consider an input
sequence of length L and an RNN with I number of inputs, a single
hidden layer with H number of hidden units, and k output units.
Let xt ∈ RI denote the input at time step t (encoded as a vector),
ht ∈ RH denote the hidden state at time step t,W ∈ RH×I denote
the weight matrix corresponding to the weights on connections
from input layer to hidden layer, V ∈ RH×H be the weight matrix
from hidden to hidden layer (recursive), and U ∈ RI×H be the
weight matrix from hidden to the output layer. The computation

model of the RNN can be defined as following:

ht = f (W ∗ xt +V ∗ ht−1);ot = softmax(U ∗ st )

The hidden state ht at time step t is computed by applying a
non-linear function f (e.g. tanh or sigmoid) to a weighted sum of
the input vector xt and the previous hidden state vector ht−1. The
output vector ot is computed by applying the softmax function to
the weighted state vector value obtained st obtained by an affine
transformation U ∗ ht . The hidden units take the weighted sum
as input and map it to a value in the set (-1,1) using the sigmoid
function to model non-linear activation relationships. The RNNs
can be trained using backpropagation through time (BPTT) [32] to
calculate the gradient and adjust the weights given a set of input
and output sequences.

3.2 The SYNFIX Algorithm

We first present the SynFixOne algorithm that fixes the first syntax
error in the student submission (if possible), and then present the
SynFix algorithm to fix multiple syntax errors.

Fixing one syntax error: The SynFixOne algorithm, shown
in Algorithm. 1, takes as input a program P (with syntax errors)
and a token sequence model M, and returns a program P ′ with
its first syntax error on the error location fixed (if possible) or ϕ
denoting that the syntax error can not be fixed. The algorithm first
uses a parser to obtain the type of error err and the token location
loc where the first syntax error occurs, and computes a prefix of
the token sequence T̃pref corresponding to the token sequence
starting from the beginning of the program until the error token
location loc. We use the notation a[i ..j] to denote a subsequence
of a sequence a starting at index i (inclusive) and ending at index
j (exclusive). The algorithm then queries the modelM to predict
the token sequence T̃k of a constant length k that is most likely to
follow the prefix token sequence.

After obtaining the token sequence T̃k , the algorithm searches
over token sequences T̃k [1..i] of increasing lengths (1 ≤ i ≤ k)

until either inserting or replacing the token sequence T̃k [1..i] at
the error location results in a program P ′ with no syntax error at
the error location. If the algorithm cannot find a token sequence
that can fix the syntax error at loc, the algorithm then creates
another prefix T̃prevpref of the original token sequence such that it
ignores all previous tokens in the same line as that of the error token
location. It then predicts another token sequence T̃prevk using the
model for the new token sequence prefix, and selects a subsequence
T̃prevk [1..m] that ends at a new line token. Finally, the algorithm
checks if replacing the line containing the error location with the
predicted token sequence results in fixing the syntax error. If yes,
it returns the fixed program P ′.

Example: Consider the Python program shown in Figure 5(a).
The Python parser returns a syntax error in line 2 with the error
offset corresponding to the location of the = token. The SynFix
algorithm first constructs a prefix of the token sequence consist-
ing of tokens from the start of the program to the error loca-
tion such that T̃pref = [’def’, ’recPower’, ’(’, ’b’, ’,’, ’e’, ’)’, ’:’, ’\r\n’,
’\t’, ’if’, ’e’]. It then queries the learnt model to predict the most
likely token sequence that follows the input prefix sequence. Let us
assume k is 3 and the model returns the predicted token sequence
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if exp == 1 :

exp == 1 :

\r\n

\r\n \t

Input Layer

Hidden Layer

Output Layer

if exp ==

1 : \r\n \t

Input Tokens

Predicted Tokens

(a) Training Phase (b) Prediction Phase

Figure 4: Themodeling of our syntax repair problem using an RNNwith 1 hidden layer. (a)We provide input and output token

sequences in the training phase to learn the weight matrices. (b) In the prediction phase, we provide a token sequence to the

input layer of the RNN and generate the output token sequences using the learnt model.

Algorithm 1 SynFixOne

Input: buggy program P , token sequence modelM
(err,loc) := Parse(P); T̃ := Tokenize(P)
T̃pref := T̃[1..loc]; T̃k := Predict(M, T̃pref )
for i ∈ range(1,k) do
P ′ins := Insert(P , loc, T̃k [1..i])
if Fixed(P ′ins , loc) return P ′ins
P ′r epl := Replace(P , loc, T̃k [1..i])
if Fixed(P ′r epl , loc) return P ′r epl

end for

T̃prevpref := T̃[1..lprev(loc)]; T̃
prev
k := Predict(M, T̃prevpref )

P ′prev := ReplaceLine(P , line(loc), T̃prevk [1..m])

if Fixed(P ′prev , , loc) return P ′prev else return ϕ

Algorithm 2 SynFix

Input: buggy program P , sequence model M, max
fixes f
for i ∈ range(1, f + 1) do
P ′ := SynFixOne(P ,M)

if P ′ == ϕ return ϕ
if Parse(P ′) = ϕ return P ′

else P := P ′

end for

return ϕ

T̃k = [’==’, ’0’, ’:’]. The algorithm first tries to use the smaller pre-
fixes of the predicted token sequence (in this case ’==’) to see if
the syntax error can be fixed. It first tries to insert the predicted
token sequence ’==’ in the original program but that results in the
expression if e == = 0:, which still results in an error. It then tries
to replace the original token sequence with the predicted token
sequence, which results in the expression if e == 0: that passes the
parser check, and returns the fixed program.

Fixing multiple syntax errors: The SynFix algorithm shown
in Algorithm. 2 takes as input the buggy student submission P , the
token sequence model M, and a parameter f denoting the maxi-
mum number of syntax corrections considered by the algorithm,
and returns either the fixed program P ′ obtained using fewer than
f number of corrections or ϕ otherwise. The algorithm iteratively
calls the SynFixOne (a maximum of f times) to fix one syntax error
in P at a time. Some example programs requiring multiple fixes are
shown in Figure 2(e).

3.3 Constraint-based Semantic Repair

After obtaining a syntactically correct program using the SynFix
algorithm, our system uses a technique similar to that of Auto-
Prof to find minimal transformations to the student program such
that it becomes functionally equivalent with respect to a refer-
ence implementation. The class of transformations are defined
using a generic error model comprising of five different types
of transformations R (rewrite rules): 1) Comparison operators:
cop → {< | ≤ | > | ≥ |! = | ==} (i.e. a comparison operator
can be modified to any of the operators in the right hand set), 2)
Arithmetic operators: aop → {+|− | ∗ |/|%}, 3) Variable replacement:
v →?v on RHS of assignments and expressions, where ?v denotes
the set of all variables live at the program location, 4) off-by-one
errors: a → {a+1,a−1, 0, 1}, and 5) Constant modification: n → ??,
where ?? denotes any integer constant value. For example, the first
rewrite rule states that any comparison operator in the student
program can be potentially rewritten to any of the operator in the
set {< | ≤ | > | ≥ |! = | ==}. Since this results in a huge search
space of program modification, we use a constraint-based synthesis
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solver Sketch to solve for minimal number of modifications such
that the student program becomes functionally correct as follows.

∃ P ′ ∀ in : P ′ = Rewrite(P ,R)∧PT (in) = P ′(in)∧min(Cost(P , P ′))
(1)

The above constraint requires Sketch to find a program P ′ in
the space of programs obtained from the rewrite rules R such
that P ′ is functionally equivalent with respect to the reference
implementation PT and P ′ requires minimal number of applications
of the rewrite rules. More details about how Sketch solves the
above constraint using the Cegis algorithm can be found in [28].

Consider the program shown in Figure 5(b), which requires 4
corrections. The program uses an undefined variable t and uses the
wrong comparison expressions a%t != 1 instead of a%mi != 0. Given
this program, Sketch uses the generic error model to identify the
correct loop comparison expression a%mi != 0 or b%mi != 0, which
results in a functionally correct program.

4 EVALUATION

We evaluate our system on 74, 818 Python submissions obtained
from the Intro to Programming in Python course (6.00x) on the edX
MOOC platform. Our benchmark set consists of student submis-
sions for 9 programming problems, which asks students to write
iterative or recursive functions over integer, string, and list data
types. The number of submissions for each problem in our evalu-
ation set is shown in Table 1 and a significant fraction of student
submissions have syntax errors (19.41%). Using the evaluation, we
aim to answer the following research questions: 1) How well our
algorithm is able to repair syntax and semantic errors?, 2) What
algorithmic choices are chosen in the SynFix algorithm for fixing
the errors?, 3) How do problem-specific models compare with gen-
eral models?, and finally 4) How does the RNN language model
compares with an n-gram baseline model.

4.1 Benchmarks

Our benchmark set consists of student submissions for 9 program-
ming problems recurPower, iterPower, oddTuples, evalPoly, com-
pDeriv, gcdRecur, hangman1, hangman2, and gcdIter taken from
the edX course. These problems ask students to write iterative or
recursive functions over integer, string, and list data types, and
requires students to use different language constructs such as con-
ditionals, nested loops, functions, list comprehensions etc to solve
the problems. The recurPower problem asks students to write a
recursive function that takes as input a number base and an integer
exp, and computes the value baseexp. The iterPower problem has
the same functional specification as the recurPower problem but
asks students to write an itervative solution instead of a recursive
solution. The oddTuples problem asks students to write a function
that takes as input a tuple l and returns another tuple that consists
of every other element of l . The evalPoly problem asks students to
write a function to compute the value of a polynomial on a given
point, where the coefficients of the polynomial are represented us-
ing a list of doubles. Finally, the compDeriv problem asks students
to write a function to return a polynomial (represented as a list)
that corresponds to the derivative of a given polynomial. The distri-
bution of the lines of code (LOC) for different benchmark problems

is shown in Figure 6. The overall mean is 7.13 LOC with a standard
deviation of 3.52.

The number of student submissions for each problem in our
evaluation set is shown in Table 1. In total our evaluation set consists
of 74, 818 student submissions. The number of submissions for the
evalPoly and compDeriv problems are relatively fewer than the
number of submissions for the other problems. This is because these
problems were still in the submission stage at the time the data
snapshot was obtained from the edX platform. But this also gives
us an opportunity to evaluate how well our technique performs
when we have thousands of correct attempts in the training phase
as compared to only a few hundred attempts. Another interesting
fact to observe from the table is that a significant fraction of student
submissions have syntax errors (19.41%).

Training Phase: The token sequencemodel for a given problem
is learnt over all the problem submissions without syntax errors.
The submissions are first tokenized into a set of sequence of tokens
(with tokens occurring below a threshold renamed as ident), which
are then fed into the RNN. We used a learning rate of 0.002, a
sequence length of 10, and a batch size of 50. We use the batch
gradient descent method with rmsprop (decay rate 0.97) to learn
the weights, where the gradients were clipped at a threshold of 1.
We use RNNwith LSTM cells consisting of 2 hidden layers eachwith
128 hidden units and train the model for 50 epochs. We also varied
the number of hidden layers (1/2), the hidden units(128/256), and
the type of RNN cells (RNN/LSTM), but did not observe significant
changes in correction accuracy.

4.2 Number of Corrected Submissions

The overall results of our system is shown in Table 1. The SynFix
algorithm is able to generate repairs to fix the syntax errors in 8689
(59.8%) programs. Amongst these repaired programs, 2051(14.12%)
of the programs are also semantically correct – i.e. the repaired
programs exhibit the desired functional behavior. Using the Sketch
system with a generic error model, our system is able to generate
semantically correct repairs for 3455(23.78%) of the submissions.
The average time taken by the SynFix to repair syntax errors is
1.15s and by Sketch to generate semantic repair is 2.7s .

We observe that even with relatively fewer number of total
attempts for the evalPoly and compDeriv problems, the system
is able to repair a significant number of syntax errors (50.3% and
55.73% respectively). The average number of tokens per problem is
331, 458, whereas the average vocabulary size for training RNNs
is only 626. This implies that there are a large number of common
identifier names shared across large number of student submissions.
For the results shown in the table, we use a vocabulary threshold
value of t = 4. Additionally, a large fraction of syntax errors can
be fixed using only 1 repair (6966), but there are still a significant
number of submissions (1723) that are repaired by considering
additional changes.

Another interesting observation is that the difference between
vocabulary size (number of unique tokens) and the training vocab-
ulary obtained after removing tokens below the threshold is not
very large – implying that there are many popular identifier names
that are shared across submissions that the language model can use
for prediction. Finally, the number of semantic corrections is the
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def recPower(b, e):
if e = 0:
return 1;

else:
return b ∗ recPower(b,e−1)

def gcdIter(a, b):
mi=min(a,b)
while a%t!=1 or b%t!=1:

mi −=1
return mi

(a) (b)

Figure 5: (a) A submission with syntax error in line 2 (= instead of ==), (b) A syntactically correct but semantically incorrect

program generated by SynFix algorithm.

Problem Total Syntax Errors Total Training Syntax Semantic RNN + Sketch

Attempts (Percentage) Tokens Vocab Fixed Fixed Semantic Fix

recurPower 10247 2071 (20.21%) 3389858 117 1309 (63.21%) 663 (32.01%) 955 (46.11%)
iterPower 11855 2661 (22.45%) 3558849 526 1864 (70.05%) 401 (15.07%) 667 (25.07%)
oddTuples 29120 4905(16.84%) 1167877 1053 2976 (60.67%) 165 (3.37%) 654 (13.34%)
evalPoly 1148 324 (28.22%) 55370 276 163 (50.31%) 39 (12.04%) 67 (20.68%)

compDeriv 528 323 (61.18%) 18557 150 180 (55.73%) 54 (16.72%) 84 (26.00%)
gcdRecur 7751 1421(18.33%) 275476 274 829 (58.34%) 426 (29.98%) 484 (34.06%)
hangman1 2040 192(9.41%) 106970 398 79 (41.14%) 14 (7.29%) 36 (18.75%)
hangman2 1604 101(6.29%) 108662 546 53 (52.48%) 8 (7.92%) 23 (22.77%)
gcdIter 10525 2528(24.01%) 552405 741 1236 (48.89%) 281(11.15%) 485 (19.18%)
Total 74818 14526(19.4%) 2983124 453 8689(59.8%) 2051(14.1%) 3455(23.8%)

Table 1: The overall results of the SynFix algorithm on 9 benchmark problems.

Problem

Incorrect

Syntactically Fixed Num. of Fixes

Offset Offset-1

PrevLine f=1 f=2

Attempts Insert Replace Insert Replace

recurPower 2071 55 55 574 832 1128 1022 287
iterPower 2661 15 14 746 964 1488 1559 305
oddTuples 4905 198 192 1279 1765 2106 2311 665
evalPoly 324 8 6 49 48 147 135 28

compDeriv 323 2 2 53 80 147 129 51
gcdIter 2528 34 44 637 640 927 1013 223

hangman1 192 1 7 24 43 64 65 14
hangman2 101 2 3 23 18 44 47 6
gcdRecur 1421 20 19 332 620 732 685 144
Total 14526 335 342 3717 5010 6783 6966 1723

Table 2: The detailed breakdown of the algorithmic choices taken by SynFix.

Figure 6: The distribution of lines of code (LOC) for different

benchmark problems.

highest for recursive problems as compared to other problems that
ask for imperative solutions.

A detailed breakdown of the choices taken by the SynFix algo-
rithm is shown in Table 2. The table reports the number of cases
for which the syntax errors were fixed by the predicted token se-
quences using different algorithmic choices: i) Offset: the prefix
token sequence is constructed from the start of the program to the
error token reported by the parser, ii) Offset-1: the prefix token
sequence is constructed upto one token before the error token,
iii) PrevLine: the prefix token sequence is constructed upto the
previous line and the error line is replaced by the predicted token
sequence, (iv) Insert: the predicted token sequence is inserted at
the Offset location, and (v) Replace: the original tokens starting at
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Figure 7: The performance of problem-specific models vs

general models trained on all the problems.

the Offset location are replaced by the predicted token sequence.
The table also reports the number of repairs that require 1 and 2
changes. We can observe that there is no one single choice that
works better than every other choice. This motivates the need of the
SynFix algorithm that tries all of the different algorithmic choices
in the order of first finding an insertion or a replacement fix us-
ing the predicted token sequences of increasing length and then
using the Previous Line method. We use this ranking order over
the choices to prefer repairs that result in smaller changes to the
original program.

First, we can observe that generating the prefix token sequences
for querying the language model that end at one token earlier than
the error token (Offset-1) performs significantly better than using
prefix sequences that end at the error token (Offset). Second, the
PrevLine choice performs the best compared to other choices. The
reason for this is that the algorithm has more freedom to make
larger changes to the original program by completely replacing the
error line, but it may sometimes also lead to undesirable semantic
changes. The Previous line changes are explored only after trying
out the Insertion/Replace choices in the SynFix algorithm. The
replacement of original tokens with the predicted token sequences
performs a little better than the insertion choice. Finally, we observe
that there are many student submissions that are fixed uniquely
by each one of the 5 choices, and the algorithm therefore needs to
consider all of the choices.

We also report the number of submissions that need 1 and 2
changes. A large fraction of submissions can be fixed using only 1
repair (6966), but there are still a significant number of submissions
(1723) that are repaired by considering additional changes. We
observe a small insignificant increase in the number of additional
repaired programs when considering f > 2 number of changes.

4.3 General vs Problem Specific Models

We now present an experiment to evaluate whether we need to train
separate token sequence models per problem or one global general
model can perform equally well. For evaluating this question, we
perform two sets of experiments. For the first experiment, we train
a general model using the set of all correct submissions for all the
benchmark problems, and compare its performance with that of
problem-specific models that are trained individually only on the
correct solutions for a given problem. For the second experiment, we
train a model only on the correct submissions for a particular bench-
mark problem (recurPower) to correct the remaining problems, and

compare its performance with the problem-specific models. The
second experiment is performed to evaluate how well the token
models learnt from one problem (with a large number of diverse
solutions) generalize to other problems. The comparisons are per-
formed based on the number of submissions that are syntactically
fixed with one (f = 1) fix.

The results for the first experiment are shown in Figure 7. Overall,
the general model performs comparable to the problem-specific
models. In total, the general model fixes syntax errors for 6833
student submissions compared to 6966 fixed by the problem-specific
models. Moreover, for two problems, gcdRecur and gcdIter, the
general model performs a little better than the problem-specific
models. This result shows that it might not be necessary to maintain
and train separate models per problem, and a global general model
trained on all the problems together can work almost as well in
most of the cases.

For investigating how well the token sequence models learnt
from one problem generalize to another problem, we perform the
second experiment. We train the RNN model on the syntactically
correct submissions for the recurPower problem and use it to per-
form corrections on submissions to other problems. The results for
this experiment are shown in Figure 8(a). We can observe that the
problem-specific model consistently fixes more number of syntax
errors as compared to the recurPower language model. In total, the
recurPower model fixes 5217 submissions whereas the problem-
specific models repair about 14% more number of submissions
(5944). In addition, we also empirically observe that the fixes gen-
erated by problem-specific models resulted in significantly higher
semantically correct fixes in comparison to the fixes generated by
the recurPowermodel. This result shows that for the RNN model to
perform well on a larger number of submissions to a new problem,
it needs to be trained on at least some correct programs from the
new problem.

4.4 Comparison with N-gram Baseline

We compare the effectiveness of using an RNNmodel to learn token
sequences over using an N-gram language model with N=5. The
5-gram model first queries the model with a prefix of 4 tokens and
returns the next token if one exists. Otherwise, it falls back to 3
size token sequence and so on until it finds one in the frequency
dictionary. We perform the standard add-1 smoothing on 5-gram
models. The results are shown in Figure 8(b). The RNN model
significantly outperforms the N-gram model consistently across
all problems. The N-gram model in total can fix syntax errors for
4016 problems (27.65%), whereas the RNN language model can fix
errors for 8689 problems (59.81%). The RNN language model is able
to capture and generalize long term dependencies between tokens
as compared to a small context learnt by the N-gram model.

5 RELATEDWORK

In this section, we describe several related work on learning lan-
guage models for Big Code, automated code grading approaches,
and machine learning based grading techniques for other domains.

Neural Networks for syntax correction: DeepFix [12] uses
an attention-based seq2seq model for learning a token model from a
synthetic set of buggy programs. The learnt model in DeepFix first
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Figure 8: (a) The performance of problem-specific vsmodel trained on recurPower. (b) Comparison of the performance of RNN

token sequence model vs a 5-gram baseline.

predicts the buggy line in the program and replaces the complete
line with the statement predicted by the model. Sk_p [22] uses a
skip-gram neural network model to predict a program statement
using the lines before and after the erroneous line. It enumerates
over all lines in the program and their potential replacements until
finding one program that is correct. Unlike these techniques that
always replace the complete statement (line) in a student program,
our system uses an iterative algorithm that is able to generate
fine-grained token-level fixes to generate small repairs, which are
more likely to correspond to student’s intent. Moreover, our system
uses constraint-based synthesis to perform semantic repairs and
complement the syntactic repairs found by the RNN token model.
Finally, the model in DeepFix is trained on a synthetic dataset
obtained by mutating correct student submissions using an error
model, whereas our token sequence model is trained directly on
the correct submissions. The synthetic dataset generation not only
requires knowing some error model upfront, but also the considered
error model might not correspond to the distribution of real-world
student errors.

Language Models for Big Code: Our work is inspired from
the work on capturing naturalness (in terms of syntactic patterns)
of code in large repositories [1, 3, 4, 13, 19, 24]. Unlike these tech-
niques that analyze large code repositories, our system analyzes
student submissions that are typically much smaller and therefore
also more amenable to more expensive analyses such as enumera-
tive and constraint-based synthesis for program correction. Hindle
et al. [13] use an n-gram model to capture the regularity of local
project-specific contexts in software and use it for next token sug-
gestions. Nguyen et al. [19] extended this model to also include
semantic token annotations that describe the token type and their
semantic role. Allamanis et al. [1] showed that the n-gram models
can significantly increase their predictive capabilities when learnt
on a large corpus containing 350 million lines of code. Natural-
ize [3] is a language-independent framework that uses the n-gram
language model to learn the coding convention from a project code-
base and suggests revisions such as identifier names and formatting
conventions to improve stylistic consistency. Allamanis et al. [4]
recently presented a technique for suggesting method and class
names from its body and methods respectively using a neural prob-
abilistic language model. JSNice [24] uses structured prediction

with CRFs for predicting identifier names and type annotation of
variables in JavaScript programs.

Our technique is inspired from these previous works, but uses
problem-specific RNN language models to compute fixes to syntax
errors in student submissions. Campbell et al. [6] presented a tech-
nique to use unnaturalness of code with syntax errors to locate the
actual source of errors. Ray et al. [23] recently showed that even
syntactically correct buggy code are typically unnatural, which can
then be used to assist bug repair methods. Our system currently
uses the Python compiler to locate error locations, but these tech-
niques can be used to complement and enhance our technique to
increase the robustness of locating errors in submissions.

Code Grading and Feedback: The problem of providing feed-
back on programming assignments has seen a lot of recent interest.
These approaches can be categorized into two broad categories
– peer-grading [14, 15] and automated grading techniques [8, 17,
26, 27, 29]. A recently proposed approach uses neural networks
to simultaneously embed both the precondition and postcondition
spaces of a set of programs into a feature space, where programs
are considered as linear maps on this space. The elements of the
embedding matrix of a program are then used as code features for
automatically propagating instructor feedback at scale [21]. How-
ever, these techniques rely on the ability to generate the program
AST and cannot repair programs with syntax errors.

Machine learning for Grading in Other domains: There
have been similar automated grading systems developed for do-
mains other than programming such as Mathematics [16] and
short answer questions [5]. The Mathematical Language Processing
(MLP) [16] framework leverages solutions from large number of
learners to evaluate correctness of student solutions to open re-
sponse Mathematical questions. It first converts an open response
to a set of numerical features, which are then used for clustering
to uncover structures of correct, partially-correct, and incorrect
solutions. A teacher assigns a grade/feedback to one solution in a
cluster, which is then propagated to all solutions in the cluster. Basu
et al. [5] present an approach to train a similarity metric between
short answer responses to United States Citizenship Exam, which
is then used to group the responses into clusters and subclusters
for powergrading. The main difference between our technique and
these techniques is that we use RNNs to learn a language model
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for token sequences unlike machine learning based clustering ap-
proaches used by these techniques. Moreover, we focus on giving
feedback on syntax errors whereas these techniques focus on se-
mantic correctness of the student solutions.

Automated Program Repair: The research in automated pro-
gram repair focuses on automatically modifying incorrect pro-
grams such that the modified program meets some desired speci-
fication [11]. GenProg [10] uses an extended form of genetic pro-
gramming to search for a source-level patch by evolving a pro-
gram variant to fix some defects in the original buggy program
while maintaining functionality with respect to a set of test cases.
SemFix [18] uses a combination of symbolic execution, constraint
solving, and program synthesis to automatically derive repair ex-
pressions for a buggy program given a set of testcases. It first uses
statistical fault localization techniques to locate the error location
and then uses layered component based synthesis techniques to
generate repair expressions of varying complexity. Qlose [8] also
uses program synthesis techniques to perform automated repair by
optimizing a multi-objective constraint of minimizing both syntac-
tic and semantic distances between the original buggy program and
the fixed program. These systems focus on fixing semantic bugs
in programs by encoding and analyzing program ASTs, whereas
our system focuses on repairing programs with syntax errors for
which program ASTs can not be obtained.

Neural Program Synthesis: There are some recent neural ar-
chitectures developed for program synthesis that learn to search
over a discrete space of programs [9, 20]. Unlike learning to search
over programs from scratch, we instead search over minimal modi-
fications to student programs and use the prefix context in student
submissions to guide the search more efficiently. We believe our
technique of learning sequencemodels over corpus of real programs
can complement program synthesis techniques as well.

6 LIMITATIONS AND FUTUREWORK

Our system currently only uses the prefix token sequence for pre-
dicting the potential token sequences for syntax repair. For the
program shown in Figure 9, the SynFix algorithm suggests the fix
corresponding to the expression exp==0. If the algorithm also took
into account the token sequences following the error location such
as return base, then it could have predicted a better fix correspond-
ing to the token sequence exp == 1, and could have produced a
semantically correct program. Our system currently uses Sketch to
perform such semantic edits, but in future we would like to extend
the RNNs to also encode the suffix sequences to potentially gener-
ate more semantic repairs. Another limitation of our system is that
we currently depend on the Python interpreter to provide the error
location for syntax errors, which is sufficient for most but not all
cases. In future, we would like to train a separate neural model that
also learns to predict such error locations in an end-to-end manner.

There is another interesting research question on how to best
translate the generated repairs into good pedagogical feedback.
Some syntax errors are simply typos such as mismatched parenthe-
sis/operators, for which the feedback generated by our technique
should be sufficient. But there are syntax errors that point to deeper

def recurPower(base, exp):
if exp < 0:

return 1
if exp = 0:

return base
return base ∗ recurPower(base, exp−1)

Figure 9: The SynFix algorithm suggests the fix exp == 0 us-

ing the prefix sequence.

misconceptions in the student’s mind. Some examples of such er-
rors include assigning to return keyword e.g. return = exp, perform-
ing an assignment inside a parameter value of a function call e.g.
recurPower(base,exp-=1), etc. We plan to build a system on top of
our technique that can first distinguish small errors from deeper
misconception errors, and then translate the suggested repair fix
accordingly so that students can learn the high-level concepts for
correctly understanding the language syntax.

7 THREATS TO VALIDITY

A threat to internal validity is that the syntax error repairs gen-
erated by the SynFix algorithm might not be natural or desirable,
since the algorithm selects any repair that passes the compiler
check. To mitigate this issue, we perform two steps. First, we use
the Sketch solver to compute semantic repairs that reduces the
potential chances to computing an undesirable syntax repair as
it will likely preclude the corresponding semantic repair. Second,
we also randomly sampled 200 syntactically-fixed programs for
2 assignments, and manually checked that 74% of the fixed pro-
grams corresponded to desirable syntax repairs. Another threat
to internal validity is that we did not comprehensively evaluate
all different neural network configurations and parameter values
due to compute resource constraint. However, we sampled some
configurations from the space using a limited parameter sweep.
A threat to external validity of our results is that we have only
evaluated our framework on small Python programs obtained from
an introductory course, which might not be representative of other
programming courses taught in different languages.

8 CONCLUSION

We presented a technique to combine RNNs with constraint-based
synthesis to repair programs with syntax errors. For a program-
ming assignment, our technique first uses the set of all syntactically
correct student submissions to train an RNN for learning the token
sequence model, and then uses the trained model to predict token
sequences for finding syntax repairs for student submissions. It then
uses constraint-based synthesis techniques to find minimal seman-
tic repairs based on a set of rewrite rules. We show the effectiveness
of our system on a large set of student submissions obtained from
edX. We believe that this combination of RNNs with constraint-
based synthesis can provide a basis for providing effective feedback
on student programs with syntax errors.
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