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Abstract

Discrete structures play an important role in applications like program language
modeling and software engineering. Current approaches to predicting complex
structures typically consider autoregressive models for their tractability, with some
sacrifice in flexibility. Energy-based models (EBMs) on the other hand offer a
more flexible and thus more powerful approach to modeling such distributions, but
require partition function estimation. In this paper we propose ALOE, a new algo-
rithm for learning conditional and unconditional EBMs for discrete structured data,
where parameter gradients are estimated using a learned sampler that mimics local
search. We show that the energy function and sampler can be trained efficiently
via a new variational form of power iteration, achieving a better trade-off between
flexibility and tractability. Experimentally, we show that learning local search
leads to significant improvements in challenging application domains. Most no-
tably, we present an energy model guided fuzzer for software testing that achieves
comparable performance to well engineered fuzzing engines like libfuzzer.

1 Introduction

Many real-world applications involve prediction of discrete structured data, such as syntax trees for
natural language processing [1, 2], sequences of source code tokens for program synthesis [3], and
structured test inputs for software testing [4]. A common approach for modeling a distribution over
structured data is the autoregressive model. Although any distribution can be factorized in such a way,
the parameter sharing used in neural autoregressive models can restrict their flexibility. Intuitively, a
standard way to perform inference with autoregressive models has a single pass with a predetermined
order, which forces commitment to early decisions that cannot subsequently be rectified. Energy-
based models [5] (EBMs), on the other hand, define the distribution with an unnormalized energy
function, which allows greater flexibility by not committing to any inference order. In principle, this
allows more flexible model parameterizations such as bi-directional LSTMs, tree LSTMs [1, 2], and
graph neural networks [6, 7] to be used to capture non-local dependencies.

Unfortunately, the flexibility of EBMs exacerbates the difficulties of learning and inference, since the
partition function is typically intractable. EBM learning algorithms therefore employ approximate
strategies such as contrastive learning, where positive samples are drawn from data and negative sam-
ples obtained from an alternative sampler [8]. Contrastive divergence [9–12], pseudo-likelihood [13]
and score matching [14] are all examples of such a strategy. However, such approaches use hand-
designed negative samplers, which can be overly restrictive in practice, thus [8, 15, 16] consider joint
training of a flexible negative sampler along with the energy function, achieving significant improve-
ments in model quality. These recent techniques are not directly applicable to discrete structured data
however, since they exploit gradients over the data space. In addition, the parameter gradient involves
an intractable sum, which also poses a well-known challenge for stochastic estimation [17–24].

In this work, we propose Auxiliary-variable LOcal Exploration (ALOE), a new method for discrete
EBM training with a learned negative sampler. Inspired by viewing MCMC as a local search in
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continuous space, we parameterize the learned sampler using local discrete search; that is, the sampler
first generates an initial negative structure using a tractable model, such as an autoregressive model,
then repeatedly makes local changes to the structure. This provides a learnable negative sampler that
still depends globally on the sequence. As there are no demonstrations for intermediate steps in the
local search, we treat it as an auxiliary variable model. To learn this negative sampler, instead of
the primal-dual form of MLE [25, 8], we propose a new variational objective that uses finite-step
MCMC sampling for the gradient estimator, resulting in an efficient method. The procedure alternates
between updating the energy function and improving the dual sampler by power iteration, which can
be understood as generalization of persistent contrastive divergence (PCD [10]).

We experimentally evaluated the approach on both synthetic and real-world tasks. For a program
synthesis problem, we observe significant accuracy improvements over the baseline methods. More
notably, for a software testing task, a fuzz test guided by an EBM achieves comparable performance
to a well-engineered fuzzing engine on several open source software projects.

2 Preliminaries

Energy-based Models: Let x ∈ S be a discrete structured datum in the space S . We are interested
in learning an energy function f : S → R that characterizes the distribution on S . Depending on the
space, f can be realized as an LSTM [26] for sequence data, a tree LSTM [1] for tree structures, or a
graph neural network [6] for graphs. The probability density function is defined as

pf (x) = exp (f(x)− logZf ) ∝ exp (f(x)) , (1)
where Zf :=

∑
x∈S exp (f(x)) is the partition function.

It is natural to extend the above model for conditional distributions. Let z ∈ Z be an arbitrary datum
in the space Z . Then a conditional model is given by the density

pf (x|z) =
exp (f(x, z))

Zf,z
, where Zf,z =

∑
x∈S

exp (f(x, z)) . (2)

Typically S is a combinatorial set, which makes the partition function Zf or Zf,z intractable to
calculate. This makes both learning and inference difficult.

Primal-Dual view of MLE: LetD = {xi}|D|i=1 be a sample obtained from some unknown distribution
over S . We consider maximizing the log likelihood of D under model pf :

max
f

` (f) := Ex∼D [f(x)]− logZf . (3)

Directly maximizing this objective is not feasible due to the intractable log partition term. Previous
work [15, 8] reformulates the MLE by exploiting the Fenchel duality of the log-partition function,
i.e., logZf = maxq Ex∼q [f(x)]−H(q), where H(q) = −Eq [log q] is the entropy of q (·), which
leads to a primal-dual view of the MLE:

max
f

min
q

¯̀(f, q) := Ex∼D [f(x)]︸ ︷︷ ︸
positive sampling

− Ex∼q [f(x)]︸ ︷︷ ︸
negative sampling

−H(q) (4)

Although the primal-dual view introduces an extra dual distribution q (x) for negative sampling,
this provides an opportunity to use a trainable deep neural network to capture the intrinsic data
manifold, which can lead to a better negative sampler. In [8], a family of flexible negative samplers
was introduced, which combines learnable components with dynamics-based MCMC samplers, e.g.,
Hamiltonian Monte Carlo (HMC) [27] and stochastic gradient Langevin dynamics (SGLD) [28], to
obtain significant practical improvements in continuous data modeling. However, the success of this
approach relied on the differentiability of q and f over a continuous domain, requiring guidance not
only from ∇xf (x), but also from gradient back-propagation through samples, i.e., ∇φ ¯̀(f, q) =
−∇φEx∼qφ [∇xf (x)∇φx] where φ denotes the parameters of the dual distribution. Unfortunately,
for discrete data, learning a dual distribution for negative sampling is difficult. Therefore this approach
is not directly translatable to discrete EBMs.

3 Auxiliary-variable Local Exploration

To extend the above approach to discrete domains, we first introduce a variational form of power
iteration (Section 3.1) combined with local search (Section 3.2). We present the method for an
unconditional EBM, but the extension to a conditional EBM is straightforward.

2



3.1 MLE via Variational Gradient Approximation

For discrete data, learning the dual sampler in the min-max form of MLE (4) is notoriously diffi-
cult, usually leading to inefficient gradient estimation [17–24]. Instead we consider an alternative
optimization that has the same solution but is computationally preferable:

max
f,q

˜̀(f, q) := max
f

max
q∈K

Ex∼D [f (x)]− Ex∼q [f (x)], (5)

K :=

{
q

∣∣∣∣ ∫ q (x) kf (x′|x) dx = q (x′) ,∀x′ ∈ S
}
, (6)

where kf (x′|x) is any ergodic MCMC kernel whose stationary distribution is pf .

Theorem 1 Let (f∗, q∗) = argmaxf,q
˜̀(f, q). If the kernel kf (x′|x) is ergodic with stationary

distribution pf , then f∗ = argmax ` (f) is the MLE and q∗ = pf∗ .

Proof By the ergodicity of kf (x′|x), there is unique feasible solution satisifying the constraint∫
q (x) kf (x′|x) dx = q (x′), which is pf (x). Substituting this into the gradient of ˜̀yields

Ex∼D [∇ff (x)]− Ex∼qf [∇ff (x)] = 0,

verifying that f is the optimizer of (3).

Solving the optimization (5) is still nontrivial, as the constraints are in the function space. We
therefore propose an alternating update based on the variational form (5):

• Update q by power iteration: Noticing that the constraint actually seeks an eigenfunction of
kf (x′|x), we can apply power iteration to find the optimal q. Conceptually, this power itera-
tion executes qt+1(x′) =

∫
qt(x)kf (x′|x) dx until convergence. However, since the integral is

intractable, we instead apply a variational formulation to minimize

qt+1 = argmin
q

DKL

(∫
qt(x)kf (x′|x) dx

∣∣∣∣∣∣q) = argmin
q

Eqt(x)kf (x′|x) [log q (x′)] . (7)

In practice, this only requires a few power iteration steps. Also we do not need to worry about
differentiability with respect to x, as (7) needs to be differentiated only with respect to the
parameters of q. We will show in the next section that this framework actually allows a much more
flexible q than autoregressive, such as a local search algorithm.

• Update f with MLE gradient: Denote q∗f = argmaxq∈K
˜̀(f, q). Then q∗f converges to pf .

Recall the unbiased gradient estimator for MLE ` (f) w.r.t. f is
∇f ` (f) = Ex∼D [∇ff (x)]− Ex∼q∗f [∇ff (x)] ,

By alternating these two updates, we obtain the ALOE framework illustrated in Algorithm 1.

Connection to PCD: When we set the number of power iteration steps to be 1, the variational form
of MLE optimization can be understood as a function generalized version of Persistent Contrastive
Divergence (PCD) [10], where we distill the past MCMC samples into the sampler q [29]. Intuitively,
since f is optimized by gradient descent, the energy models between adjacent stochastic gradient
iterations should still be close, and the power iteration will converge very fast.

Connection to wake-sleep algorithm: ALOE is also closely related to the “wake-sleep” algo-
rithm [30] introduced for learning Helmholtz machines [31]. The “sleep” phase learns the recognition
network with objective DKL(pf ||q), requiring samples from the current model. However it is hard to
obtain such samples for general EBMs, so we exploit power iteration in a variational form.

3.2 Negative sampler as local search with auxiliary variables

Ideally the sampler q∗ should converge to the stationary distribution pf , which requires a sufficiently
flexible distribution. One possible choice for a discrete structure sampler is an autoregressive model,
like RobustFill for generating program trees [3] or GGNN for generating graphs [32]. However,
these have limited flexibility due to parameters being shared at each decision step, which is needed
to handle variable sized structures. Also the “one-pass” inference according to a predefined order
makes the initial decisions too important in the entire sampling procedure.
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Algorithm 1 Main algorithm of ALOE

1: Input: Observations D = {xi}|D|i=1
2: Initialize score function f , sampler q.
3: for x ∼ D do
4: Sample (x̂, x̃) from q(x̂)kf (x̃|x̂)
5: Update f with −∇ff(x) +∇ff(x̃)
6: Update q using Algorithm 2
7: end for

Algorithm 2 Update sampler q

1: Input: Current model f
2: for i← 1 to # power iteration steps do
3: Sample x̃ from q, and get x from kf (·|x̃).
4: Sample trajectories {xj0:tj}

N
j=1 for x using

Eq (13) or Eq (14).
5: Update q with gradient from Eq (12).
6: end for

Figure 1: ALOE for learning unconditional discrete EBMs. Algorithms are similar for conditional
case. We demonstrate with a single example, but in practice batched optimization is used.

Intuitively, humans do not generate structures sequentially, but perform successive refinement. Recent
approaches for continuous EBMs have found that using HMC or SGLD provides more effective
learning [8, 12] by exploiting gradient information. For discrete data, an analogy to gradient based
search is local search. In discrete local search, an initial solution can be obtained using a simple
algorithm, then local modification can be made to successively improve the structure.

By parameterizing q as a local search algorithm, we obtain a strictly more flexible sampler than the
autoregressive counterpart. Specifically, we first generate an initial sample x0 ∼ q0, where q0 can be
an autoregressive distribution with parameter sharing, or even a fully factorized distribution. Next we
obtain a new sample using an editor qA(xi|xi−1), where qA(·|·) : S × S 7→ R defines a transition
probability. We also maintain a stop policy qstop(·) : S 7→ [0, 1] that decides when to stop editing. The
overall local search procedure yields a chain of x0:t := {x0, x1, . . . , xt}, with probability

q(x0:t;φ) = q0(x0)

t∏
i=1

qA(xi|xi−1)

t−1∏
i=0

(1− qstop(xi))qstop(xt) (8)

where φ denotes the parameters in q0, qA and qstop. The marginal probability of a sample x is:

q(x;φ) =
∑

t,x0:t:t≤T

q(x0:t;φ)I [xt = x] , where T is a maximum length, (9)

which we then use as the variational distribution in Eq (7). The variational distribution q can be viewed
as a latent-variable model, where x0, . . . , xt−1 are the latent variables. This choice is expressive, but
it brings the difficulty of optimizing (7) due to the intractability of marginalization. Fortunately, we
have the following theorem for an unbiased gradient estimator:

Theorem 2 Steinhardt and Liang [33]: the gradient with respect to parameters φ has the form
∇φ log q(x;φ) = Eq(x0:t|xt=x;φ) [∇φ log q([x0:t−1, x];φ)] (10)

where q(x0:t|xt = x;φ) ∝ q(x0:t;φ)I [xt = x].

In above equation, q(x0:t|xt = x;φ) is the posterior distribution given the final state x of the local
search trajectory, which is hard to directly sample from. The common strategy of optimizing the
variational lower bound of likelihood would require policy gradient [34] and introduce extra samplers.
Instead, inspired by Steinhardt and Liang [33], we use importance sampling with self-normalization
to estimate the gradient in (10). Specifically, let sx(x0:t−1) be the proposal distribution of the local
search trajectory. We then have

∇φ log q(x;φ) = Esx(x0:t−1)

[
q(x0:t|xt = x;φ)

sx(x0:t−1)
∇φ log q([x0:t−1, x];φ)

]
(11)

In practice, we draw N trajectories from the proposal distribution, and approximate the normalization
constant in q(x0:t|xt = x;φ) via self-normalization. The Monte Carlo gradient estimator is:

∇φ log q(x;φ) ' 1

N

N∑
j=1

q(xj0:tj |xtj = x;φ)

sx(xj0:tj−1)
∇φ log q([xj0:tj−1, x];φ)

' 1

N

N∑
j=1

q(xj0:tj ;φ)

sx(xj0:tj−1)
∑N
k=1 q(x

k
0:tk

;φ)
∇φ log qφ([xj0:tj−1, x];φ) (12)

The self-normalization trick above is also equivalent to re-using the same proposal samples from
sx(x0:t−1) to estimate the normalization term in the posterior q(x0:t|xt = x;φ). Then, given
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a sample x, a good proposal distribution for trajectories needs to guarantee that every proposal
trajectory ends exactly at x. Below we propose two designs for such proposal.

Inverse proposal: Instead of randomly sampling a trajectory and hoping it arrives exactly at x, we can
walk backwards from x, sampling xt−1, xt−2, . . . , x0. We call this an inverse proposal. In this case,
we first sample a trajectory length t. Then for each backward step, we sample xk ∼ A′(xk|xk+1).
For simplicity, we sample t from a truncated geometric distribution, and choose A′(·|·) from the same
distribution family as the forward editor qA(·|·), except that A′ is not trained. In this case we have

sx(x0:t−1) = Geo(t)

t−1∏
i=0

A′(xi|xi+1) (13)

Empirically we have found that the learned local search sampler will adapt to the energy model with
a different expected number of edits, even though the proposal is not learned.

Edit distance proposal: In cases when we have a good q0, we design the proposal distribution based
on shortest edit distance. Specifically, we first sample x0 ∼ q0. Then, given x0 and the target x, we
sample the trajectory x1:t−1 that would transform x0 to x with the minimum number of edits. For
the space of discrete data S = {0, 1}d, the number of edits equal the hamming distance between x0
and x; if S corresponds to programs, then this corresponds to the shortest edit distance. Thus

sx(x0:t−1) ∝ q0(x0)I [t = ShortestEditDistance(x0, x)] (14)
Note that such proposal only has support on shortest paths, which would give a biased gradient in
learning the local search sampler. In practice, we found such proposal works well. If necessary, this
bias can be removed: For learning the EBM, we care only about the distribution over end states, and
we have the freedom to design the local search editor, so we could limit it to generate only shortest
paths, and the edit distance proposal would give unbiased gradient estimator.

Parameterization of qA: We restrict the editor qA(·|xi−1) to make local modifications, since local
search has empirically strong performance [35]. Also such transitions resemble Gibbs sampling,
which introduces a good inductive bias for optimizing the variational form of power iteration. Two
example parameterizations for the local editor are:

• If x ∈ {0, 1, . . . ,K}d, then qA(·|xi−1) = Multi(d) × Multi(K), where the first multinomial
distribution decides a position to change, and the second one chooses a value for that position.

• If x is a program, the editor chooses a statement in the program and replaces with a generated
statement. The statement selector follows a multinomial with arbitrary dimensionality using the
pointer mechanism [36], while the statement generater can be an autoregressive tree generator.

The learning algorithm for the sampler and the overall learning framework is summarized in Figure 1.
Please also refer to our open sourced implementation for more details 1.

4 Related work

Learning EBMs: Significant progress has recently been made in learning continuous EBMs [12, 37],
thanks to efficient MCMC algorithms with gradient guidance [27, 28]. Interestingly, by reformulating
contrastive learning as a minimax problem [38, 8, 16], in addition to the model [15] these methods
also learn a sampler that can generate realistic data [39]. However learning the sampler and gradient
based MCMC require the existence of the gradient with respect to data points, which is unavailable
for discrete data. These methods can also be adapted to discrete data using policy gradient, but might
be unstable during optimization. Also for continuous data, Xie et al. [29] proposed an MCMC
teaching framework that shares a similar principle to our variational power method, when the number
of power iterations is limited to 1 (Algorithm 2). Our work is different in that we propose a local
search sampler and novel importance proposal that is more suitable for discrete spaces of structures.

For discrete EBMs, classical methods like CD, PCD or wake-sleep are applicable, but with drawbacks
(see Section 3.1). Other recent work with discrete data includes learning MRFs with a variational
upper bound [40], using the Gumbel-Softmax trick [41], or using a residual-energy model [42, 43]
with a pretrained proposal for noise contrastive estimation [44], but these are not necessarily suitable
for general EBMs. SPEN [45, 46] proposes a continuous relaxation combined with a max-margin
principle [47], which works well for structured prediction, but could suffer from mode collapse.

1https://github.com/google-research/google-research/tree/master/aloe
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Figure 2: Visualization of learned energy model and sampler. From left to right: 2spirals, 8gaussians,
checkerboard, circles, moons, pinwheel, swissroll. Due to the limited space, please refer to Figure A.1
in appendix for the visualization of training samples.

Learning to search: Our parameterization of the negative sampler with auxiliary-variable local
search is also related to work on learning to search. Most work in that literature considers learning
the search strategy given demonstrations [48–51]. When no supervised trajectories are available,
policy gradient with variance reduction is typically used to improve the search policy, in domains
like machine translation [52] and combinatorial optimization [35]. Our variational form for power
iteration circumvents the need for REINFORCE, and thereby gains significant stability in practice.

Other discrete models: There are many other models for discrete data, like invertible flows for
sequences [53, 54] or graphs [55, 56]. Recently there is also interest in learning non-autoregressive
models for NLP [57–59]. The main focus of ALOE is to provide a new learning algorithm for EBMs.
Comparing EBMs and other discrete models will be interesting for future investigation.

5 Experiments

5.1 Synthetic problems

We first focus on learning unconditional discrete EBMs p(x) ∝ exp f(x) from data with an unknown
distribution, where the data consists of bit vectors x ∈ {0, 1}32.

Baselines: We compare against a hand designed sampler and a learned sampler from the recent
literature. The hand designed sampler baseline is PCD [10] using a replay buffer and random restart
tricks [12], which has shown superior results in image generation. The learned sampler baseline is the
discrete version of ADE [8]. Please refer to Appendix A.1 for more details about the baseline setup.

Experiment setup: This experiment is designed to allow both a quantitative and 2D visual evaluation.
We first collect synthetic 2D data in a continuous space [60], where the 2D data x̂ ∈ R2 is sampled
from some unknown distribution p̂. For a given x̂, we convert the floating-point number representation
(with precision up to 1e−4) of each dimension into a 16-bit Gray code.2 This means the unknown true
distribution in discrete space is p(x) = p̂([GrayToFloat(x0:15)/1e4, GrayToFloat(x16:31)/1e4]).
This task is challenging even in the original 2D space, compounded by the nonlinear Gray code.
All the methods learn the same score function f , which is parameterized by a 4-layer MLP with
ELU [61] activations and hidden layer size= 256. ADE and ALOE learns the same form of q0. Since
the dimension is fixed to 32, q0 is an autoregressive model with no parameter sharing across 32 steps.
For ALOE we also use Gibbs sampling as the base MCMC sampler, but we only perform one pass
over 32 dimensions, which is only 1/10 of what PCD used.

Main results: To quantitatively evaluate different methods, we use MMD [62] with linear kernel
(which corresponds to 32− HammingDistance) to evaluate the empirical distribution between true
samples and samples from the learned energy function. To obtain samples from f , we run 20× 32
steps of Gibbs sampling and collect 4000 samples. We can see from Table 1 that ALOE consistently
outperforms alternatives across all datasets. ADE variant is worse than PCD on some datasets, as
REINFORCE based approaches typically requires careful treatment of the gradient variance.

We also use VAE [63] or autoregressive model to learn the discrete distribution, where the results
are shown in the “Other” section of Table 1. Note that these models are different, so the numerical

2https://en.wikipedia.org/wiki/Gray_code
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Sampler visualization in 2D space Run edit on initial x0 Run edit on x from sampler

Figure 3: Visualization of learned local search sampler in 2D (left) and original discrete Gray code
(mid + right) space. See Section 5.1 for more information.

Table 1: Synthetic results with MMD-hamming (×1e−3) as evaluation metric, and the lower the
better. * denote the discrete adaptation of its original method for continuous domain.

2spirals 8gaussians circles moons pinwheel swissroll checkerboard
PCD-10* [10, 12] 34.73 0.3 -0.3 0.48 -0.42 -0.49 -1.04

ADE* [8] 33.4 -0.28 2.01 2.16 7.64 6.12 -0.69
ALOE 30.37 -0.97 -0.83 -0.64 -0.64 -0.58 -1.7

A
bl

at
io

n ADE-fac 236.6 65.7 261.7 248.6 187.2 95.3 78.2
ALOE-fac-noEdit 51.24 91.2 5.97 76.8 59.7 15 2.98

ALOE-fac-edit 32.6 3 -1.5 1.27 5.02 0.44 -2.03

O
th

er AutoRegressive 32.7 -0.3 -0.8 -0.45 -1.27 0.31 -0.2
VAE 35.2 2.09 0.16 1.1 0.85 2.05 -0.77

comparison is mainly for the sake of completeness. ALOE mainly focuses on learning a given energy
based model, rather than proposing a new probabilistic model.

Visualization: We first visualize the learned score function and sampler in Figure 2. To plot the heat
map, we first uniformly sample 10k 2D points with each dimension in [−4, 4]. Then we convert the
floating-point numbers to Gray code to evaluate and visualize the score under learned f . Please refer
to Appendix A.1 for more visualizations about baselines. In Figure 3, we visualize the learned local
search sampler in both discrete space and 2D space by decoding the Gray code. We can see ALOE
gets reasonable quality even with a weak q0(x) =

∏32
i=1 q0(x[i]), and it automatically adapts the

refinement steps according to the quality of q0.
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Figure 4: Training objective and gradient variance.

Gradient variance: Here we empiri-
cally justify the necessity of the vari-
ational power iteration objective de-
sign in (7) against the REINFORCE
objective. We train ADE and ALOE
(with only q0 for comparison) on
pinwheel data, and plot the negative
log-likelihood of EBM (estimated via
importance sampling) and the Monte
Carlo estimation of gradient variance
in Figure 4. We can clearly see ALOE enjoys lower variance and thus faster and better convergence
than REINFORCE based methods for EBMs.

Ablation: Here we try to justify the necessity of both local edits and the variational power iteration
objective. a)To justify the local edits, we use a fully factorized initial q0, and compare ALOE-fac-
noEdit (no further edits) against ALOE-fac-edit (with ≤16 edits). ALOE-fac-edit performs much
better than the noEdit version. We use a weak q0 here since we don’t need many edits when q0 is
the powerful MLP with no parameter sharing (which is not feasible in realistic tasks). Nevertheless,
ALOE automatically learns to adapt number of edits as studied in Figure 3 left. b)We also show the
objective in (7) achieves better results than the REINFORCE objective from ADE.
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Figure 5: Coverage statistics on different softwares with different amount of test inputs generated.

5.2 Generative fuzzing

A critical step in software quality assurance is to generate random inputs to test the software
for vulnerabilities, also known as fuzzing [64]. Recently learning based approaches have shown
promising results for fuzzing [4, 65]. In this section we focus on the generative fuzzing task, where
we first learn a generative model from existing seed inputs (a set of software-dependent binary files)
and then generate new inputs from the model to test the software.

Experiment setup: We collect three software binaries (namely libpng, libmpeg2 and openjpeg)
from OSS-Fuzz3 as test target. For all ML based methods, we use the seed inputs that come with
OSS-Fuzz to learn the generative model. As each test input for software can be very large (e.g., a
media file for libmpeg2), we train a truncated EBM with a window size of 64. Specifically, we learn
a conditional EBM f(x|y), where x ∈ {0, . . . , 255}64 is a chunk of byte data and y ∈ {0, 1, . . .} is
the position of this chunk in its original file.

During inference, instead of generating test inputs from scratch (which would be too difficult to
generate 1M bytes while still being parsable by the target software), we use the learned model to
modify the seed inputs instead. To modify i-th byte of the byte string x using learned EBM, we
sample the byte b ∝ exp(f([xi−31, . . . , b, . . . ,xi+32]|i)) by conditioning on its surrounding context.

We compare against the following generative model based methods:

• Learn&Fuzz [4]: this method learns an autoregressive model from sequences of byte data. We
adapt its open-source implementation4. To use the autoregressive model for mutating the seed
inputs, we perform the edit by sampling xi ∼ p(·|x0:i−1) conditioned on its prefix.

• ADE [8]: This method parameterizes the model and initial sampler q0 in the same way as ALOE.
• CD: As PCD is not directly applicable for conditional EBM learning, we use CD instead.
• RNN-EBM: It treats the autoregressive model learned by Learn&Fuzz as an EBM, and mutates the

seed inputs in the same way as other EBM based mutations.

We also use uniform sampling (denoted as Uniform) over byte modifications as a baseline, and
include LibFuzzer coverage with the same seed inputs as reference. Note that LibFuzzer is a well
engineered system used commercially for fuzzing, which gathers feedback from the test program by
monitoring which branches are taken during execution. Therefore, this is supposed to be superior to
generative approaches like EBMs, which do not incorporate this feedback.

For all methods, we generate up to 100k inputs with 100 modifications for each. The main evaluation
measure is coverage, which measures how many of the lines of code, branches, and so on, are
exercised by the test inputs; higher is better. This statistic is reported by LibFuzzer5.

Results are shown in Figure 5. Overall the discrete EBM learned by ALOE consistently outperforms
the autoregressive model. Suprisingly, the coverage obtained by ALOE is comparable or even better
than LibFuzzer on some targets, despite the fact that LibFuzzer has access to more information
about the program execution. In the long run, we believe that this additional information will allow
LibFuzzer to perform the best, it is still appealing that ALOE has high sample efficiency initially.
Regarding several EBM based methods, we can see CD is comparable on libpng but for large
target like openjpeg it performs much worse. ADE performs good initially on some targets but
gets worse in the long run. Our hypothesis is that it is due to the lack of diversity, which suggests

3https://github.com/google/oss-fuzz
4https://github.com/google/clusterfuzz/tree/master/src/python/bot/fuzzers/ml/rnn
5https://llvm.org/docs/LibFuzzer.html
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Table 2: Program synthesis accuracy on RobustFill tasks [3].

Top-1 Beam-1 Top-1 Beam-10 Top-10 Beam-10
seq2seq-init 45.86 55.49 58.66
seq2seq-tune 47.86 57.52 60.62

ALOE 53.57 61.99 65.29
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a potential mode drop problem that is common in REINFORCE based approaches. The uniform
baseline performs worst in most cases, except on libmpeg2 early stage. Our hypothesis is that the
uniform fuzzer quickly triggers many branches that raise formatting errors, which explains its high
coverage initially.

We also combine the test inputs generated by LibFuzzer and ALOE (the orange dotted curve, for
which the x-axis shows the number of samples from each method). The coverage of this combined
set of inputs is better than either individually, showing that the methods are complementary.

5.3 Program Synthesis

In program synthesis, the task is to predict the source code of a program given a few input-output
(IO) pairs that specify its behavior. We evaluate ALOE on the RobustFill task [3] of generating string
transformations.The purpose here is to evaluate the effect of proposed local edits in our sampler, so
the other methods like ADE or PCD are not applicable here. For full details, see Appendix A.2.

Experiment setup: Data is generated synthetically, following Devlin et al. [3]. Each example in the
data set is a synthesis task where the input is four IO pairs, the target is a program, and a further
six IO pairs are held out for evaluation. The training data is generated on the fly, while we keep
10k test examples for evaluation. Each target program consists of at most 10 sub-expressions in a
domain-specific languages which includes string concatenation, substring operations, etc. We report
accuracy, which measures when the predicted program is consistent with all 10 IO pairs.

For ALOE we learn a conditional sampler q(x|z) where x is the program syntax tree, and z is the
list of input-output pairs. We compare with 3-layer seq2seq model for program prediction. Both
seq2seq and ALOE share the same IO-pair encoder. As mentioned in Section 3.2, the initial distri-
bution q0 is the same as seq2seq autoregressive model, while subsequent modifications A(xi+1|xi)
adds/deletes/replaces one of the subexpressions. We train baseline seq2seq with 483M examples
(denoted as seq2seq-init), and fine-tune with additional 264M samples (denoted as seq2seq-tune) with
reduced learning rate. ALOE initializes q0 from seq2seq-init and set it to be fixed, and train the editor
qA(·|·) with same additional number of samples with the shortest edit importance proposal (14).

Results: We report the top-k accuracy with different beam-search sizes in Table 2. We can see ALOE
outperforms the seq2seq baseline by a large margin. Although the initial sampler q0 is the same
as seq2seq-init, the editor qA(·|·) is able to further locate and correct sub-expressions of the initial
prediction. In the figure to the right of Table 2, We also visualize the number of edits our sampler
makes on the test set. In most cases q0 already produces correct results, and the sampler correctly
learns to stop at step 0. From 1 to 9 edits we can see the editor indeed improved from q0 by a large
margin. There are many cases which require 10 or more edits, in which case we truncate the local
search steps to 10. Some of them are difficult cases where the sampler learns to ask for more steps,
while for others the sampler keeps modifying to semantically equivalent programs.

6 Conclusion
In this paper, we propose ALOE, a new algorithm for learning discrete EBMs for both conditional
and unconditional cases. ALOE learns a sampler that is parameterized as a local search algorithm
for proposing negative samples in contrastive learning framework. With an efficient importance
reweighted gradient estimator, we are able to train both the sampler and the EBM with a variational
power iteration principle. Experiments on both synthetic datasets and real-world software testing
and program synthesis tasks show that both the learned EBM and local search sampler outperforms
the autoregressive alternative. Future work includes better approximation of learning local search
algorithms, as well as extending it to other discrete domains like chemical engineering and NLP.
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Broader Impact

We hope our new algorithm ALOE for learning discrete EBMs can be useful for different domains
with discrete structures, and it furthers the general research efforts in this direction of generative
models of discrete structures. In this paper, we present its application to program synthesis and
software fuzzing. A positive outcome of improved performance in program synthesis would be that it
can help democratize the task of programming by allowing people to express their desired intent using
input-output examples without the need of learning complex programming languages. Similarly, a
positive outcome of improvements in software fuzzing could allow software developers to identify
bugs and vulnerabilities quicker and in turn improve software reliability and robustness.

A possible negative outcome could be that malicious attackers might also use such technology to
discover software vulnerabilities and use it for undesirable purposes [66]. However, this outcome
is not specific to our technique but more generally applicable to the large research field of software
fuzzing, and there is a large amount of work in the fuzzing field for accounting ethical considera-
tions. For example, the vulnerabilities typically found by fuzzers is first responsibly disclosed to
corresponding software teams [67] that gives them enough time to patch the vulnerabilities before the
bugs and vulnerabilities are released publicly.
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