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Abstract

This paper introduces the “Search, Align, and Repair” data-
driven program repair framework to automate feedback gen-
eration for introductory programming exercises. Distinct
from existing techniques, our goal is to develop an efficient,
fully automated, and problem-agnostic technique for large or
MOOC-scale introductory programming courses. We lever-
age the large amount of available student submissions in such
settings and develop new algorithms for identifying simi-
lar programs, aligning correct and incorrect programs, and
repairing incorrect programs by finding minimal fixes. We
have implemented our technique in the Sarfgen system and
evaluated it on thousands of real student attempts from the
Microsoft-DEV204.1x edX course and the Microsoft Code-
Hunt platform. Our results show that Sarfgen can, within
two seconds on average, generate concise, useful feedback
for 89.7% of the incorrect student submissions. It has been
integrated with the Microsoft-DEV204.1X edX class and de-
ployed for production use.

1 Introduction

The unprecedented growth of technology and computing
related jobs in recent years [25] has resulted in a surge in
Computer Science enrollments at colleges and universities,
and hundreds of thousands of learners worldwide signing
up for Massive Open Online Courses (MOOCs). While larger
classrooms and MOOCs have made education more accessi-
ble to a much more diverse and greater audience, several key
challenges remain to ensure comparable education quality
to that of traditional smaller classroom settings. This paper
tackles one such challenge: providing fully automated, per-
sonalized feedback to students for introductory programming
exercises without requiring any instructor effort. Even though
introductory programming exercises require relatively small
program size, relevant literature [7, 24] has shown that stu-
dents still struggle and need effective tools to help them,
further highlighting the need of automated feedback tech-
nology.

The problem of automated feedback generation for intro-
ductory programming courses has seen much recent inter-
est — many systems have been developed using techniques
from formal methods, programming languages, and machine
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Approach

No Manual

Effort

Minimal

Repair

Complex

Repairs

Data-Driven

Production

Deployment

AutoGrader [24] ✗ ✓ ✗ ✗ ✗

CLARA [11] ✓ ✗ ✓ ✓ ✗

QLOSE [3] ✗ ✗ ✗ ✗ ✗

sk_p [22] ✓ ✗ ✓ ✓ ✗

REFAZER [23] ✓ ✗ ✗ ✓ ✗

CoderAssist [16] ✗ ✗ ✓ ✓ ✗

Sarfgen ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of Sarfgen against the existing feed-
back generation approaches.

learning. Most of these techniques model the problem as
a program repair problem: repairing an incorrect student
submission to make it functionally equivalent w.r.t. a given
specification (e.g., a reference solution or a set of test cases).
Table 1 summarizes some of the major techniques in terms of
their capabilities and requirements, and compares them with
our proposed technique realized in the Sarfgen1 system.
As summarized in the table, existing systems still face

important challenges to be effective and practical. In par-
ticular, AutoGrader [24] requires a custom error model per
programming problem, which demands manual effort from
the instructor and her understanding of the system details.
Moreover, its reliance on constraint solving to find repairs
makes it expensive and unsuitable in interactive settings at
the MOOC scale. Systems like CLARA [11] and sk_p [22]
can generate repairs relatively quickly by using clustering
and machine learning techniques on student data, but the
generated repairs are often imprecise and not minimal, re-
ducing the quality of the feedback. CLARA’s use of Integer
Linear Programming (ILP) for variable alignment during re-
pair generation also hinders its scalability. Section 5 provides
a detailed survey of related work.

To tackle the weaknesses of existing systems, we introduce
“Search, Align, and Repair”, a conceptual framework for pro-
gram repair from a data-driven perspective. First, given an
incorrect program, we search for similar reference solutions.
Second, we align each statement in the incorrect program
with a corresponding statement in the reference solutions
to identify discrepancies for suggesting changes. Finally, we
pinpoint minimal fixes to patch the incorrect program. Our
key observation is that the diverse approaches and errors
students make are captured in the abundant previous submis-
sions because of the MOOC scale [5]. Thus, we aim at a fully
automated, data-driven approach to generate instant (to be
1Search, Align, and Repair for Feedback GENeration
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interactive), minimal (to be precise) and semantic (to allow
complex repairs) fixes to incorrect student submissions. At
the technical level, we need to address three key challenges:

Search: Given an incorrect student program, how to effi-
ciently identify a set of closely-related candidate pro-
grams among all correct solutions?

Align: How to efficiently and precisely align each selected
program with the incorrect program to compute a
correction set that consists of expression- or statement-
level discrepancies?

Repair: How to quickly identify a minimal set of fixes out
of an entire correction set?

For the “Search” challenge, we identify syntactically most
similar correct programs w.r.t. the incorrect program in a
coarse-to-fine manner. First, we perform exact matching
on the control flow structures of the incorrect and correct
programs, and rank matched programs w.r.t. the tree edit dis-
tance between their abstract syntax trees (ASTs). Although
introductory programming assignments often feature only
lightweight small programs, the massive number of submis-
sions in MOOCs still makes the standard tree edit distance
computation too expensive for the setting. Our solution is
based on a new tree embedding scheme for programs using
numerical embedding vectors with a new distance metric
in the Euclidean space. The new program embedding vec-
tors (called position-aware characteristic vectors) efficiently
capture the structural information of the program ASTs. Be-
cause the numerical distance metric is easier and faster to
compute, program embedding allows us to scale to a large
number of programs.
For the “Align” challenge, we propose a usage-based α-

conversion to rename variables in a correct program using
those from the incorrect program. In particular, we represent
each variable with the new embedding vector based on its
usage profile in the program, and compute the mapping be-
tween two sets of variables using the Euclidean distance met-
ric. In the next phase, we split both programs into sequences
of basic blocks and align each pair accordingly. Finally, we
construct discrepancies by matching statements only from
the aligned basic blocks.

For the final “Repair” challenge, we dynamically minimize
the set of corrections needed to repair the incorrect program
from the large set of possible corrections generated by the
alignment step. We present some optimizations that gain
significant speed-up over the enumerative search.
Our automated program repair technique offers several

important benefits:

• Fully Automated: It does not require any manual
effort during the complete repair process.
• Minimal Repair: It produces a minimal set of cor-
rections (i.e., any included correction is relevant and
necessary) that can better help students.

• Unrestricted Repair: It supports both simple and
complex repair modifications to the incorrect program
without changing its control-flow structure.
• Portable: Unlike most previous approaches, it is inde-
pendent of the programming exercise — it only needs
a set of correct submissions for each exercise.

We have implemented our technique in the Sarfgen sys-
tem and extensively evaluated it on thousands of program-
ming submissions obtained from the Microsoft-DEV204.1x
edX course and the CodeHunt platform [28]. Sarfgen is
able to repair 89.7% of the incorrect programs with minimal
fixes in under two seconds on average. In addition, it has
been integrated with the Microsoft-DEV204.1x course and
deployed for production use. The feedback collected from
online students demonstrates its practicality and usefulness.

This paper makes the following main contributions:
• We propose a high-level data-driven framework —
search, align and repair — to fix programming sub-
missions for introductory programming exercises.
• We present novel instantiations for different frame-
work components. Specifically, we develop novel pro-
gram embeddings and the associated distance metric
to efficiently and precisely identify similar programs
and compute program alignment.
• We present an extensive evaluation of Sarfgen on re-
pairing thousands of student submissions on 17 differ-
ent programming exercises from theMicrosoft-DEV204-
.1x edx course and the Microsoft CodeHunt platform.

2 Overview

This section gives an overview of our approach by introduc-
ing its key ideas and high-level steps.

X O X O X O X O
O X O X O X O X
X O X O X O X O
O X O X O X O X
X O X O X O X O
O X O X O X O X
X O X O X O X O
O X O X O X O X

Figure 1. Desired output for the chessboard exercise.

2.1 Example: The Chessboard printing problem

The Chessboard printing assignment, taken from the edX
course of C# programming, requires students to print the pat-
tern of chessboard using "X" and "O" characters to represent
the squares as shown in Figure 1.

The goal of this problem is to teach students the concept
of conditional and looping constructs. On this problem, stu-
dents struggled with many issues, such as loop bounds or
conditional predicates. In addition, they also had trouble

2
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1 static void Main(string[] args){

2 for(int i = 0;i < 8;i++){

3 String chess = "";

4 for (int j = 0;j < 8;j++){

5 if (j % 2 == 0)

6 chess += "X";

7 else

8 chess += "0";

9 }

10 Console.Write(chess+"\n");

11 }}

(a)

1 static void Main(string[] args){
2 int length = 8;
3 bool ch = true;
4
5 for (int i = 0; i < length; i++)
6 {
7 for (int j = 0; j < length; j++)
8 {
9 if (ch) Console.Write("X");
10 else Console.Write("O");
11
12 ch = !ch;
13 }
14
15 Console.Write("\n");
16 }}

(b)

1 static void Main(string[] args){
2 for (int i = 1; i < 9; i++){
3 for (int j = 1; j < 9; j++){
4 if (i % 2 > 0)
5 if (j % 2 > 0)
6 Console.Write("O");
7 else
8 Console.Write("X");
9 else
10 if (j % 2 > 0)
11 Console.Write("X");
12 else
13 Console.Write("O");
14 }
15 Console.WriteLine();
16 }}

(c)

Figure 2. Three different incorrect student implementations for the chessboard problem.

1 static void Main(string[] args){

2 for (int i = 0; i < 8; i++){

3 String query = string.Empty;

4 for (int j = 0; j < 8; j++){

5 if ((i + j) % 2 == 0)

6 query += "X";

7 else

8 query += "O";

9 }

10 Console.WriteLine(query);

11 }}

(a) .

1 static void Main(string[] args){
2 bool blackWhite = true;
3 for (int i = 0; i < 8; i++)
4 {
5 for (int j = 0; j < 8; j++)
6 {
7 if (blackWhite)
8 Console.Write("X");
9 else
10 Console.Write("O");
11 blackWhite = !blackWhite;
12 }
13
14 blackWhite = !blackWhite;
15 Console.WriteLine("");
16 }}

(b)

1 static void Main(string[] args){
2 for (int i = 0; i < 8; i++){
3 for (int j = 0; j < 8; j++){
4 if (i % 2 == 0)
5 if (j % 2 == 0)
6 Console.Write("X");
7 else
8 Console.Write("O");
9 else
10 if (j % 2 == 0)
11 Console.Write("O");
12 else
13 Console.Write("X");
14 }
15 Console.WriteLine();
16 }}

(c)

Figure 3. The respective top-1 reference solutions found by Sarfgen.

The program requires 2 changes:
• In j % 2 == 0 on line 5, change j to (i+j).
• In chess += 0 on line 8, replace 0 to O.

(a)

The program requires 1 change:
• At line 14, add ch = !ch.

(b)

The program requires 1 change:
• In i % 2 > 0 on line 4, change > to ==.

(c)

Figure 4. The feedback generated by Sarfgen on the three incorrect student submissions from Figure 2.

understanding the functional behavior obtained from com-
bining looping and conditional constructs. For example, one
common error we observed among student attempts was
that they managed to alternate "X" and "O" for each sepa-
rate row/column, but (mistakenly) repeated the same pattern
for all rows/columns (rather than flipping for consecutive
rows/columns).

One key challenge in providing feedback on programming
submissions is that a given problem can be solved using
many different algorithms. In fact, among all the correct stu-
dent submissions, we found 337 different control-flow struc-
tures, indicating the fairly large solution space one needs to
consider. It is worth mentioning that modifying incorrect

programs to merely comply with the specification using a ref-
erence solution may be inadequate. For example, completely
rewriting an incorrect program into a correct program will
achieve this goal, however such a repair might lead a student
to a completely different direction, and would not help her
understand the problems with her own approach. Therefore,
it is important to pinpoint minimal modifications in their
particular implementation that addresses the root cause of
the problem. In addition, efficiency is important especially
in an interactive setting like MOOC where students expect
instant feedback within few seconds and also regarding the
deployment cost for thousands of students.
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Given the three different incorrect student submissions
shown in Figure 2, Sarfgen generates the feedback depicted
in Figure 4 in under two seconds each. During these two
seconds, Sarfgen searches over more than two thousand
reference solutions, and selects the programs in Figure 3
for each incorrect submission to be compared against. For
brevity, we only show the top-1 candidate program in the
comparison set. Sarfgen then collects and minimizes the
set of changes required to eliminate the errors. Finally, it
produces the feedback which consists of the following infor-
mation (highlighted in bold in Figure 4 for emphasis):
• The number of changes required to correct the errors
in the program.
• The location where each error occurred denoted by
the line number.
• The problematic expression/statement in the line.
• The problematic sub-expression/expression that needs
to be corrected.
• The new value of sub-expression/expression.

Sarfgen is customizable in terms of the level of the feed-
back an instructor would like to provide to the students.
The generated feedback could consist of different combina-
tions of the five kinds of information, which enables a more
personalized, adaptive, and dynamic tutoring workflow.

2.2 Overview of the Workflow

We now briefly present an overview of the workflow of the
Sarfgen system. The three major components are outlined
in Figure 5: (1) Searcher, (2) Aligner, and (3) Repairer.

Figure 5. The overall workflow of the Sarfgen system.

(1) Searcher: The Searcher component takes as input an
incorrect program Pe and searches for the top k closest
solutions among all the correct programs P1, P2, P3, ...
and Pn for the given exercise. The key challenge is to
search a large number of programs in an efficient and
precise manner. The Searcher component consists of:
• Program Embedder: The Program Embedder con-
verts Pe and P1, P2, P3, ...Pn into numerical vectors.
We propose a new scheme of embedding programs
that improves the original characteristic vector rep-
resentation used previously in Jiang et al. [12].
• Distance Calculator: Using program embeddings,
the Distance Calculator computes the top k clos-
est reference solutions in the Euclidean space. The
advantage is such distance computations are much
more scalable than the tree edit distance algorithm.

(2) Aligner: After computing a set of top k candidate pro-
grams for comparison, the Aligner component aligns
each of the candidate programs P1, ...Pk w.r.t. Pe .
• α-conversion: We propose a usage-set based α-con-
version. Specifically, we profile each variable on its
usage and summarize it into one single numeric vec-
tor via our new embedding scheme. Next, we min-
imize the distance between two sets of variables
based on the Euclidean distance metric. This novel
technique not only enables efficient computation but
also achieves high accuracy.
• Statement Matching: After the α-conversion, we
align basic blocks, and in turn individual statements
within each aligned basic blocks.

Based on the alignment, we produce a set of syntactical
discrepancies C(Pe , Pk ). This is an important step as
misaligned programs would result in an imprecise set
of corrections.

(3) Repairer: Given C(Pe , Pk ), the Repairer component
produces a set of fixes F (Pe , Pk ). Later it minimizes
F (Pe , Pk ) by removing the syntactic/semantic redun-
dancies that are unrelated to the root cause of the error.
We propose our minimization technique based on an
optimized dynamic analysis to make the minimal re-
pair computation efficient and scalable.

3 The Search, Align, and Repair Algorithm

This section presents our feedback generation algorithm.
In particular, it describes the three key functional compo-
nents: Search, Align, and Repair to cope with the challenges
discussed in Section 1.

3.1 Search

To realize our goal of using correct programs to repair an
incorrect program, the very first problem we need to solve is
to identify a small subset of correct programs among thou-
sands of submissions that are relevant to fixing the incorrect
program in an efficient and precise manner. To start with,
we perform exact matching between reference solutions and
the incorrect program w.r.t. their control-flow structures.
Definition 3.1. (Control-Flow Structure) Given a program
P , its control-flow structure, CF(P), is a syntactic registration
of how control statements in P are coordinated. For brevity,
we denote CF(P) to simply be a sequence of symbols (e.g.
Forstart , Forstart , If start , If end , Elsestart , Elseend , Forend , Forend
for the program in Figure 2a).
Given the selected programs with the same control-flow

structure, we search for similar programs using a syntactic
approach (in contrast to a dynamic approach) for two rea-
sons: (1) less overhead (i.e. faster) and (2) more fault-tolerant
as runtime dynamic traces likely lead to greater differences
if students made an error especially on control predicates.
However, using the standard tree edit distance [27] as the

4



441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

Data-Driven Feedback Generation for Introductory Programming Exercises PL’17, January 01–03, 2017, New York, NY, USA

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Figure 6. The eight 2-level atomic tree patterns for a label
set of {a, ϵ} on the left. Using 2-level characteristic vector to
embed the tree on the right: ⟨1, 1, 0, 0, 0, 0, 0, 1⟩; and 2-level
position-aware characteristic vector: ⟨⟨4⟩, ⟨3⟩, ...., ⟨2⟩⟩.

distance measure does not scale to a large number of pro-
grams. We propose a new method of embedding ASTs into
numerical vectors, namely the position-aware characteristic
vectors, with which Euclidean distance can be computed
to represent the syntactic distance. Next, we briefly revisit
Definitions 3.2 and 3.3 proposed in [12], upon which our
new embedding is built.
Given a binary tree, we define a family of atomic tree

patterns to capture structural information of a tree. They are
parametrized by a parameter q, the height of the patterns.

Definition 3.2. (q-Level Atomic Tree Patterns) A q-level
atomic pattern is a complete binary tree of height q. Given
a label set L, including the empty label ϵ , there are at most
|L|2

q−1 distinct q-level atomic patterns.

Definition 3.3. (q-Level Characteristic Vector) Given a tree
T , its q-level characteristic vector is ⟨b1, ....,b |L |2q−1⟩, where
bi is the number of occurrences of the i-th q-level atomic
pattern in T .

Figure 6 depicts an example. Given the label set {a, ϵ}, the
tree on the right can be embedded into ⟨1, 1, 0, 0, 0, 0, 0, 1⟩ us-
ing 2-level characteristic vectors. The benefit of such embed-
ding schemes is the realization of gauging program similarity
using Hamming distance/Euclidean distance metric which is
much faster to compute. In order to further enhance the pre-
cision of the AST embeddings, we introduce a position-aware
characteristic vector embedding which incorporates more
structural information into the encoding vectors.

Definition 3.4. (q-Level Position-Aware Characteristic Vec-
tor) Given a tree T , its q-level position-aware characteristic
vector is ⟨⟨b11, ....,b

n1
1 ⟩, ⟨b

1
2, ....,b

n2
2 ⟩, ⟨b

L
|L |2q−1

, ....,b
n
|L |2q−1

|L |2q−1
⟩⟩,

where b ji is the height of the root node of the j-th occurrence
of the i-th q-level atomic pattern in T .

Essentially we expand each element bi defined in the q-
level characteristic vector into a list of heights for each i-th
q-level atomic pattern in T (bi = |⟨b1i , ....,b

ni
i ⟩|). Using a 2-

level position-aware characteristic vector, the same tree in
Figure 6 can be embedded into ⟨⟨4⟩, ⟨3⟩, ...., ⟨2⟩⟩. For brevity,
we shorten the q-level position-aware characteristic vector

to be ⟨hb1 , ....,hb |L |2q−1 ⟩ where hbi represents the vector of
heights of all i-th q-level atomic tree patterns. The distance
between two q-level position-aware characteristic vector is:√√√

|L |2q−1∑
i=1
| |sort(hbi ,ϕ) − sort(h

′
bi
,ϕ)| |22 (1)

where ϕ = max(|hbi |, |h
′
bi |) (2)

where sort(hbi ,ϕ) means sorting hbi in descending order
followed by padding zeros to the end if hbi happens to be the
smaller vector of the two. The idea is to normalizehbi andh′bi
prior to the distance calculation. | |...| |22 denotes the square of
the L2 norm. We are given the incorrect program (havingm
nodes in its AST) and ρ candidate solutions (assuming each
has the same number of nodes n in their ASTs to simplify the
calculation). Creating the embedding as well as computing
the Euclidean distance on the resulting vectors has a worst-
case complexity ofO(m+ρ∗n+ρ∗ (|hb1 |, ...., |hb |L |2q−1 |)). Be-
cause the position-aware characteristic vectors can be com-
puted offline for the correct programs, we can further reduce
the time complexity to O(m + ρ ∗ (|hb1 |, ...., |hb |L |2q−1 |)). In
comparison, the state-of-the art Zhang-Shasha tree edit dis-
tance algorithm [31] runs in O(ρ ∗m2n2). Our large-scale
evaluation shows that this new program embeddings using
position-aware characteristic vectors and the new distance
measure not only leads to significantly faster search than
tree edit distance on ASTs but also negligible precision loss.

3.2 Align

The goal of the align step is to compute Discrepancies (Defi-
nition 3.5). The rationale is that after a syntactically similar
program is identified, it must be correctly aligned with the
incorrect program such that the differences between the
aligned statements can suggest potential corrections.

Definition 3.5. (Discrepancies) Given the incorrect pro-
gram Pe and a correct program Pc , discrepancies, denoted
by C(Pe , Pc ), is a list of pairs, (Se ,Sc ), where Se /Sc is a non-
control statement2 in Pe /Pc .

Aligning a reference solution with the incorrect program
is a crucial step in generating accurate fixes, and in turn feed-
back. Figure 7 shows an example, in which the challenges
that need to be addressed are: (1) renaming s1 in the correct
solution to s — failing to do so will result in an incorrect let
alone precise fix; (2) computing the correct alignment which
leads to the minimum fix of changing char s = ‘O’ on line
3 in Figure 7a to char s = ‘X ’; and (3) solving the previous
two tasks in a timely manner to ensure a good user experi-
ence. Our key idea for solving these challenges is to reduce
the alignment problem to a distance computation problem,
2Hereinafter we denote non-control statement to include loop headers,
branch conditions, etc.
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specifically, of finding an alignment of two programs that
minimizes their syntactic distances. We realize this idea in
two-steps: variable-usage based α-conversion and two-level
statement matching.

1 static void Main(string[] args){

2 // change 'O' to 'X'

3 char s = 'O';

4
5 for (int i=0;i<8;i++){

6 for (int j=0;j<8;j++){

7 Console.Write(s);

8 if (j < 7){

9 if (s == 'X')

10 s = 'O';

11 else

12 s = 'X';

13 }

14 }

15
16 Console.WriteLine();

17 }}

(a) An incorrect program.

1 static void Main(string[] args){

2 string s1 = "X";

3 string s2 = "";

4
5 for (int i=0;i<8;i++){

6 for (int j=0;j<8;j++){

7 s2 = s2 + s1;

8 if (j < 7){

9 if (s1 == "X")

10 s = "O";

11 else

12 s = "X";

13 }}

14
15 Console.WriteLine(s2);

16 s2 = "";

17 }}

(b) A reference solution.

Figure 7. Highlighting the usage of variable s and s1 for
aligning the two programs.

Variable-usage based α-Conversion The dynamic app-
roach of comparing the runtime traces for each variable
suffers from the same scalability issues mentioned in the
search procedure. Instead, we present a syntactic approach —
variable-usage based α-conversion. Our intuition is that how
a variable is being used in a program serves as a good indi-
cator of its identity. To this end, we represent each variable
by profiling its usage in the program.

Definition 3.6. (Usage Set) Given a program P and the
variable set Vars(P), a usage set of a variable v ∈ Vars(P)
consists of all the non-control statements featuring v in P .

We then collect the usage set for each variable in Pe/Pc
to formU(Pe )/U(Pc ). Now the goal is to find a one-to-one
mapping between Vars(Pe ) and Vars(Pc ) which minimizes
the distance between U(Pe ) and U(Pc ). Note that if the
number of variables between the two programs Vars(Pe )
and Vars(Pc ) are different before alignment, new (existing)
variables will be added (deleted) during the alignment step.

α-conversion = argmin
Vars(Pc ) ↔ Vars(Pe )

∆(U(Pc ),U(Pe )) (3)

We can now compute the tree-edit distance between state-
ments in any two usage sets inU(Pe ) andU(Pc ), and then
find the matching that adds up to the smallest distance be-
tweenU(Pe ) andU(Pc ). However, the total number of usage
sets inU(Pe ) andU(Pc ) (denoted by the level of usage set)
and the number of statements in each usage set (denoted

by the level of statement) will lead this approach to a com-
binatorial explosion that does not scale in practice. Instead,
we rely on the new program embeddings to represent each
usage set with only one single position-aware characteristic
vector. Using Hvi /H ′vi to denote the vector for usage set of
vi ∈Vars(Pe )/ v ′i ∈Vars(Pc ), we instantiate Equation 3 into

α-conversion = argmin
vi↔v ′i

ω∑
i=1
| |Hvi − H

′
vi | |2 (4)

where ω = min(|Vars(Pc )|, |Vars(Pe )|) (5)

The benefits of this instantiation are: (1) it only focuses on
the combination at the level of usage set, and therefore elim-
inates a vast majority of combinations at the level of state-
ment; and (2) it can quickly compute the Euclidean distance
between two usage sets. Note the computed mapping be-
tween Vars(Pc ) and Vars(Pe ) in Equation 4 does not necessar-
ily lead to the correctα-conversion. To deal with the phenom-
enon that variables may need to be left unmatched if their
usages are too dissimilar, we apply the Tukey’s method [29]
to remove statistical outliers based on the Euclidean distance.
After the α-conversion, we turn Pc into Pαc .

Two-Level StatementMatching We leverage program str-
ucture to perform statement matching at two levels. At the
first level, we fragment Pe and Pαc into a collection of basic
blocks according to their control-flow structure, and then
align each pair in order. This alignment will result in a 1-1
mapping of the basic blocks due to CF(Pe ) ≡ CF(Pαc ). Next,
we match statements/expressions only within aligned basic
blocks. In particular, we pick the matching that minimizes
the total syntactic distance (tree edit distance) among all
pairs of matched statements within each aligned basic blocks.
Figure 8 depicts the result of aligning programs in Figure 7.

3.3 Repair

Given C(Pe , Pαc ), we generate F (Pe , Pαc ) as follows:

• Insertion Fix: Given a pair (Se ,Sc ), if Se = ∅ meaning
Sc is not aligned to any statement in Pe , an insertion
operation will be produced to add Sc .
• Deletion Fix: Given a pair (Se ,Sc ), if Sc = ∅ meaning
Se is not aligned to any statement in Pc , a deletion
operation will be produced to delete Se .
• Modification Fix: Given a pair (Se ,Sc ), if Sc , ∅ and
Se , ∅, a modification operation will be produced
consisting the set of standard tree operations to turn
the AST of Se to that of Sc .

The computed set of potential fixes F (Pe , Pαc ) typically
contains a large set of redundancies that are unrelated to
the root cause of the error in Pe . Such redundancies can be
classified into two categories:
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Figure 8. Aligning basic blocks for programs in Figure 2b
and 3b after α-conversion (aligned blocks are connected by
arrows); matching statements within each pair of aligned
basic blocks ( italicized statements denotes matching; state-
ments annotated by +/- denotes insertion/deletion.).

• Syntactic Differences: Pe and Pαc may use different
expressions in method calls, parameters, constants, etc.
Figure 9a highlights such syntactic differences.
• Semantic Differences:More importantly, F (Pe , Pαc )
may also contain semantically-equivalent differences
such as different conditional statements yet logically
equivalent if statement; different initialization and
conditional expressions that evaluate to the same num-
ber of loop iterations; or expressions computing similar
values composed of different variables (not variable
names). Figure 9b highlights such semantic differences.

The Repair component is responsible for filtering out all
those benign differences that are mixed in F (Pe , Pαc ), in
other words, picking Fm(Pe , Pαc ) (Fm(Pe , Pαc ) ⊆ F (Pe , Pαc ))
that only fix the issues in Pe while leaving the correct parts
unchanged (Definition 3.7). A direct brute-force approach is
to exhaustively incorporate each subset ofF (Pe , Pαc ) into the
original incorrect program, and test the resultant program
by dynamic execution. This approach yields 2 |F(Pe ,Pαc ) | − 1
number of trials in total. As the number of operations in
F (Pe , Pαc ) increases, the search space become intractable.
Instead, we apply several optimization techniques to make
the procedure more efficient and scalable (cf. Section 4).

Definition 3.7. (Minimality) Given an incorrect program
P and a set of possible changes U , a set of changes F ⊂ U
to correct P is defined to be minimal if there does not exist
F ′ s.t. |F ′ | < |F | and F ′ fixes P . Correctly fixing P is w.r.t. a
given test suite, i.e. the fixed program should pass all tests.

3.4 The Repair Algorithm in Sarfgen

We now present the complete repair algorithm in Sarfgen.
The system first matches the control flow (Line 3-6); then
selects top k candidates for repair (Line 7-12); Line 16-19 de-
notes the search, align and repair procedure, whereas Line 23
generates the feedback.

Algorithm 1: Sarfgen’s feedback generation.
/* Pe: an incorrect program; Ps: all correct

solutions; ℓ: feedback level */

1 function FeedbackGeneration(Pe , Ps , ℓ)
2 begin

/* identify Pcs that have the same control

flow of Pe among all solutions Ps */

3 Pcs ← ∅

4 for P ∈ Ps do
5 if CF(P ) = CF(Pe ) then
6 Pcs ← { P } ∪ Pcs

/* collect Pdis that consist of k most

similar programs with Pe. */

7 Pdis ← ∅

8 for P ∈ Pcs do
9 if | Pdis | < k ∥

10 D(P , Pe ) < D(Pkth ∈ Pdis , Pe ) then
11 Pdis ← Pdis \ { Pkth }
12 Pdis ← { P } ∪ Pdis

13 n ←∞

14 Fm(Pe ) ← null // minimum set of fix for Pe
15 for Pc ∈ Pdis do
16 Pαc ← α-Conversion(Pe , Pc )
17 C(Pe , Pαc ) ← Discrepencies(Pe , Pαc )
18 F (Pe , Pαc ) ← Fixes(C(Pe , Pαc ))
19 Fm(Pe , Pαc ) ←Minimization(F (Pe , Pαc ))
20 if |Fm(Pe , Pαc )| < n then

21 Fm(Pe ) ← Fm(Pe , Pαc )
22 n ← |Fm(Pe , Pαc )|

/* translate fixes into feedback message. */

23 f = Translating(Fm(Pe ), ℓ)
24 return f
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static void Main(string[] args){

for(int i = 0;i < 8;i++){

String chess = "";

for (int j = 0;j < 8;j++){

if (j % 2 == 0)

chess += "X";

else

chess += "0";

}

Console.Write(chess+"\n");

}}

static void Main(string[] args){

for (int i = 0; i < 8; i++){

String query = string.Empty;

for (int j = 0; j < 8; j++){

if ((i + j) % 2 == 0)

query += "X";

else

query += "O";

}

Console.WriteLine(query);

}}

(a) Syntactic differences between programs in Figures 2a and 3a.

static void Main(string[] args){

for (int i = 1; i < 9; i++){

for (int j = 1; j < 9; j++){

if (i % 2 > 0)

if (j % 2 > 0)

Console.Write("O");

else

Console.Write("X");

else

if (j % 2 > 0)

Console.Write("X");

else

Console.Write("O");

}

Console.WriteLine();

}}

static void Main(string[] args){

for (int i = 0; i < 8; i++){

for (int j = 0; j < 8; j++){

if (i % 2 == 0)

if (j % 2 == 0)

Console.Write("X");

else

Console.Write("O");

else

if (j % 2 == 0)

Console.Write("O");

else

Console.Write("X");

}

Console.WriteLine();

}}

(b) Semantic differences between programs in Figures 2c and 3c.

Figure 9. Syntactic and semantic differences.

4 Implementation and Evaluation

We briefly describe some of the implementation details of
Sarfgen, and then report the experimental results on bench-
mark problems. We also conduct an in-depth analysis for
measuring the usefulness of the different techniques and
framework parameters, and conclude with an empirical com-
parison with the CLARA tool [11].

4.1 Implementation

Sarfgen is implemented in C#. We use the Microsoft Roslyn
compiler framework for parsing ASTs and dynamic execu-
tion. We keep 5 syntactically most similar programs as the
reference solutions. For the printing problem fromMicrosoft-
DEV204.1X, we convert the console operation to string op-
eration using the StringBuilder class. As for all the program
embeddings, we use 1-level characteristic vectors only due
to the suitable dimensionality. In other words, levels greater
than one will yield characteristic vectors of excessively high
dimensions (i.e. over millions for any realistic programming
language such as C/C++/C#) that do not provide good effi-
ciency/precision tradeoffs. All experiments are conducted
on a Dell XPS 8500 with a 3rd Generation Intel Core®TM

i7-3770 processor and 16GB RAM.

4.2 Results

We evaluate Sarfgen on the chessboard printing problem
from Microsoft-DEV204.1X as well as 16 out of the 24 prob-
lems (the other seven are rarely attempted by students) on the
CodeHunt education platform (ignoring the submissions that
are syntactically incorrect).3 Table 2 shows the results. Over-
all, Sarfgen generates feedback based on minimum fixes for
4,311 submissions out of 4,806 incorrect programs in total (∼∼∼
90%) within two seconds on average. Our evaluation results
validate the assumption we made since all the minimal fixes
modify up to three lines only. Another interesting finding is
that Sarfgen performed better on CodeHunt programming

3Please refer to https://kbwang.bitbucket.io/misc/pldi18-paper93-supple-
mental-text.pdf for a brief description of each benchmark problem.

submissions than on Microsoft-DEV204.1x’s assignment de-
spite the fewer number of correct programs. After further
investigation, we conclude that the most likely cause for
this is the printing nature of Microsoft-DEV204.1x’s exer-
cise placing little constraint on the control-flow structure. In
an extreme, we find students writing straight-line programs
even in several different ways, and therefore those programs
are more diverse and difficult for Sarfgen to precisely find
the closest solutions. On the other hand, CodeHunt programs
are functional and more structured. Even though there are
fewer reference implementations, Sarfgen is capable of re-
pairing more incorrect submissions.

4.3 In-depth Analysis

We now present a few in-depth experiments to better under-
stand the contributions of different techniques for the search,
align, and repair phases. First, we investigate the effect of dif-
ferent program embeddings adopted in the search procedure.
Then, we investigate the usefulness of our α-conversion
mechanism compared against other variable alignment ap-
proaches. For these experiments, we use two key metrics:
(i) performance (i.e. how long does Sarfgen take to gener-
ate feedback), and (2) capability (i.e. how many incorrect
programs are repaired with minimum fixes). To keep our ex-
periments feasible, we focus on three problems that have the
most reference solutions (i.e. Printing, MaximumDifference
and FibonacciSum).

Program Embeddings As the number k of top-k closest
programs used for the reference solutions increases, we
compare the precision of our program embeddings using
position-aware characteristic vector against (1) program em-
beddings using the characteristic vector and (2) using the
original AST representation. We adopt a cut-off point of
Fm(Pe , Pαc ) to be three. Otherwise, if we let Sarfgen tra-
verse the power set of F (Pe , Pαc ), the capability criterion will
be redundant. In all settings, Sarfgen adopts the usage-set
based α-conversion via position-aware characteristic vec-
tors. Also, Sarfgen runs without any optimization tech-
niques. Figure 10 shows the results. The embeddings using
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Benchmark

Average

(LOC)

Median

(LOC)

Correct

Attempts

InCorrect

Attempts

Generated Feedback

on Minimum Fixes

Average Time

Time (in s)

Median Time

Time (in s)

Divisibility 4 3 609 398 379 (%95.2) 0.84 0.89
ArrayIndexing 3 3 524 449 421 (%93.8) 0.82 0.79
StringCount 6 4 803 603 562 (%93.2) 1.38 1.13
Average 8 7 551 465 419 (%90.1) 1.16 1.08

ParenthesisDepth 18 15 505 315 277 (%88.0) 2.25 2.32
Reversal 14 11 623 398 374 (%94.0) 2.10 1.77
LCM 15 10 692 114 97(%85.1) 2.07 2.14

MaximumDifference 11 8 928 172 155 (%90.1) 1.40 1.78
BinaryDigits 10 7 518 371 343 (%92.4) 2.29 2.01

Filter 12 8 582 88 71 (%80.7) 1.64 1.72
FibonacciSum 14 12 899 131 114 (%87.0) 2.78 2.45
K-thLargest 11 9 708 241 208 (%86.3) 1.51 1.16
SetDifference 16 13 789 284 236 (%83.1) 1.68 1.19
Combinations 14 10 638 68 56 (%82.4) 2.13 1.94
MostOnes 29 33 748 394 328 (%87.9) 2.72 2.15

ArrayMapping 16 14 671 315 271 (%86.0) 1.46 1.8
Printing 24 21 2281 742 526 (%70.9) 3.16 2.77

Table 2. Experimental results on the benchmark problems obtained from CodeHunt and edX course.

(a) Comparison on capability. (b) Comparison on performance.

Figure 10. Position-Aware Characteristic Vector vs. Characteristic Vector.

(a) Comparison on capability. (b) Comparison on performance.

Figure 11. Compare different α-conversion techniques based on the same set of reference solutions.

position-aware characteristic vectors are almost as precise
as ASTs and achieves exactly the same accuracy as ASTs
when the number of closest solutions equals five. In addition,
the position-aware characteristic vector embedding consis-
tently outperforms the characteristic vector embedding by
more than 10% in terms of capability. Moreover, although

position-aware characteristic vector uses higher dimensions
to embed ASTs, it is generally faster due to the higher ac-
curacy in selected reference solutions, and in turn lower-
ing the computational cost spent on reducing F (Pe , Pαc ) to
Fm(Pe , Pαc ). When Sarfgen uses fewer reference solutions,
the two embeddings do not display noticeable differences
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since the speedup offered by the later is insignificant. Both
embedding schemes are significantly faster than the AST
representation.

α-Conversion Wenext evaluate the precision and efficiency
of the α-conversion in the align step. Given the same set of
candidate solutions (identified by AST representation in the
previous step), we compare our usage-based α-conversion
via position-aware characteristic vector against (1) the same
usage-based α-conversion via standard tree-edit operations
and (2) a dynamic trace-based α-conversion via sequence
alignment. We adopt the same configurations as in the previ-
ous experimentwhich is to set the cut-off point ofFm(Pe , Pαc )
to be three and perform minimization without optimizations.
As shown in Figure 11, our usage-set based α-conversion
via position-aware characteristic vectors outperforms that
via standard tree-edit operations by more than an order of
magnitude at the expense of little precision loss measured by
capability. In the meanwhile, dynamic variable-trace based
sequence alignment displays the best performance at a con-
siderable cost of capability mainly due to its poor tolerance
against erroneous variable traces.

Optimizations One of the main performance bottlenecks
in the repair phase is dynamic execution, where the largest
performance hit comes from the traversal of power sets of
F (Pe , Pαc ). To tackle this challenge, we design and realize
three key techniques that help prune the search space sub-
stantially.
• Reachability-based Pruning: We leverage the reach-
ability of a fix to examine its applicability before it
is attempted.4 In particular, if a fix location is never
reached on any execution path w.r.t. any of the pro-
vided inputs, it is safe to exclude it from the minimiza-
tion procedure.
• Co-ordinated Changes: Certain corrections are coor-
dinated, i.e. they should only be included/excluded
simultaneously due to their co-occurrence nature. For
example, when operations in F (Pe , Pαc ) introduces a
new variable (v ∈ Vars(Pαc ) ∧v < Vars(Pe )) or delete
existing variable (v < Vars(Pαc ) ∧ v ∈ Vars(Pe )),
we bundle the operations that deletes/inserts an ex-
pression composed of Var together to be co-existing
members that can either all be included or excluded in
Fm(Pe , Pαc ). The intuition is if a new/existing variable
is inserted/deleted, it’s illegitimate to separate the cas-
cading expressions that are not sensible on its own, i.e.
expressions composed of a deleted variable will cause
compilation to fail.
• Reusing Dynamic Executions: The exhaustive dynamic
executions on the power set of F (Pe , Pαc ) can be used

4Assuming test cases provided by the instructors are thorough and cover
all corner cases.

to recycle the computations to detect the syntactic/se-
mantic redundancy. For example, while exhausting
all subsets of one operation, even if we did not dis-
cover Fm(Pe , Pαc ), we can detect the correction sets
that are functionally redundant (i.e. do not change the
semantics of incorrect program), and consequently re-
move them from the future computations. The more
the number of iterations required to find Fm(Pe , Pαc ),
the larger the set of redundancies that can be discov-
ered and eliminated resulting in a mutual beneficial
relationship.

According to our evaluation, these optimizations are able
to gain approximately one order of magnitude speedup.

Minimization Effectiveness In Table 3, we show the ef-
fectiveness of Sarfgen’s repair component by comparing
the number of fixes pre- and post-minimization procedure.

Programming

Problems

Number of Fixes

Before Minimization

Number of Fixes

After Minimization

Divisibility 2.1 1.6
ArrayIndexing 1.8 1.2
StringCount 3.5 1.9
Average 3.8 2.1

ParenthesisDepth 8.3 2.8
Reversal 6.5 2.3
LCM 8.2 3.1

MaximumDifference 5.5 2.3
BinaryDigits 6.4 2.1

Filter 7.9 3.5
FibonacciSum 7.6 3.1
K-thLargest 6.8 2.6
SetDifference 10.1 3.6
Combinations 9.7 3.6
MostOnes 10.8 4.2

ArrayMapping 9.5 3.2
Printing 12.7 3.5

Table 3. Evaluating Sarfgen’s repair component.

4.4 Reliance on Data

We conducted a further experiment to understand the de-
gree to which Sarfgen relies on the correct programming
submissions to have a reasonable utility. Initially, we use all
the correct programs from all the programming problems,
then we gradually down-sample them to observe the effects
this may have on Sarfgen’s capability and performance.
Figure 12a/12b depicts the capability/performance change
as the number of correct solutions is reduced from 100% to
1% under the standard configuration. In terms of capability,
Sarfgen maintains almost the same power as the number
of correct programs drops to half of the total. Even using
only 1% of the total correct programs, Sarfgen still man-
ages to produce feedback based on minimal fixes for almost
60% of the incorrect programs in total. The reason for this
phenomenon is that the vast majority of students generally
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adopt an algorithm that their peers have correctly adopted.
So even though the correct programs are down-sampled,
there still exist some solutions of common patterns that can
help a large portion of students who also attempt to solve
the problem in a common way. Consequently, those students
will not be affected. On the other hand, Sarfgen will un-
derstandably have more difficulties to deal with corner-case
programming submissions. However, because the number of
such programs is small, it generally does not have a severe
impact. As for performance, the changes are twofold. On
one hand, with fewer correct solutions, Sarfgen performs
less computation. On the other hand, Sarfgen generally
spends more time reducing F (Pe , Pαc ) to Fm(Pe , Pαc ) since
the reference solutions become more dissimilar due to down-
sampling. Since Sarfgen is able to find precise reference
solutions for most of the incorrect programs when the num-
ber of reference solutions is not too low, i.e. above 1%, the
final outcome is that Sarfgen becomes slightly faster.

(a) Capability trend. (b) Performance trend.

Figure 12. Capability and performance changes as the num-
ber of correct solutions decrease.

(a) Capability trend. (b) Performance trend.

Figure 13. Capability and performance changes as the size
of program grows.

4.5 Scalability with Program Size

To understand how our system scales as the size of program
increases, we conducted another experiment in which we
partitioned the incorrect programs into ten groups accord-
ing to size of the program, i.e. the number of lines in code.
In terms of performance (Figure 13a), Sarfgen manages to
generate the repairs within ten seconds in almost all cases.
Regarding capability (Figure 13b), Sarfgen generates mini-
mal fixes for close to 90% of incorrect programs when their
size is under 20 lines of code and still over 50% when the size
is less than 40 lines of code.

4.6 Comparison against CLARA

In this experiment, we conduct an empirical comparison
against CLARA [11] using the same benchmark set. Since
CLARA works on C programs, we followed the following
procedure. First, we convert our C# programs into C pro-
grams that CLARA supports. In fact, we only converted the
Console operation into printf for the Printing problem, as a
result we have 488 out of 742 programs from edX that still
compile, but only 395 out of 4,311 programs from CodeHunt
since they generally contain more complex data structures.
In total, we have 883 programs as the benchmark set for
both systems to compare. Both systems use exactly the same
set of correct programs in different languages. Second, be-
cause we experienced issues when invoking the provided
clustering API5 to cluster correct programs, we instead run
CLARA on each correct program separately to repair the
incorrect programs and select the fixes that are minimal and
fastest (prioritize minimality over performance when neces-
sary). On the other hand, Sarfgen is set up with standard
configuration following Algorithm 1.
The results are shown in Table 4. As the solution set is

down-sampled from 100% to 1%, Sarfgen generates consis-
tently more minimal fixes than CLARA (Table 4a). For the
results on performance shown in Table 4b, CLARA outper-
forms Sarfgen marginally on the programs of small size,
i.e., fewer than 15 lines of code, whereas CLARA scales sig-
nificantly worse than Sarfgen when the size of programs
grows, i.e., slower by more than one order of magnitude
when dealing with program of more than 25 lines. Regard-
ing the performance comparison, in reality, CLARA usually
compares an incorrect program with hundreds of reference
solutions according to [11] to pick the smaller fixes, therefore
the performance measured is a significant under-estimation.
Furthermore, CLARA shows better performance in part due
to the less work it undertakes since it does not guarantee
minimal repairs.

4.7 User Study

The latest version of Sarfgen has been deployed onto the
Microsoft-DEV204.1x course website on edX. Here we report
the feedback users have submitted.
The goal of this study is to measure the usefulness of

Sarfgen after being deployed to integrate with the C# edX
course6. We study two research questions: 1) Can Sarfgen
help the learning efficiency of the students? and 2) Do stu-
dents consider the feedback generated by Sarfgen to be
helpful? To answer the first question we randomly selected
200 hundred students based on the edX Id and evenly sep-
arated them into two groups (i.e. 100 students per group):
pre-deployment (Group A) and post-deployment (Group B).

5The match command provided in the Example section at
https://github.com/iradicek/clara produces unsound result
6http://mslexcodegrader.azurewebsites.net/
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Percentage of

Solutions

Number of Minimum

Fixes (Sarfgen)

Number of Minimum

Fixes (CLARA)

100% 688 573
80% 661 540
60% 647 492
40% 603 426
20% 539 349
1% 466 271

(a) Comparison on capability.

LOC (Total # of

Programs)

Average Time Taken

(Sarfgen)

Average Time Taken

(CLARA)

0-5 (122) 1.14s 0.84s
5-10 (227) 1.38s 1.71s
10-15 (269) 2.69s 2.25s
15-20 (137) 3.02s 9.71s
20-25 (91) 3.81s 20.84s

25 or more (37) 5.26s 40.39s
(b) Comparison on performance.

Table 4. Sarfgen vs. CLARA on the same dataset.

Then we compare the interaction history across the two
groups of students using two metrics: i) the number of sub-
mission iterations and ii) the length of time until they sub-
mitted a correct program. Results show that 96% of students
in Group B (vs. 37% of students in Group A) completed their
assignment within next two attempts. In addition 97% of
post-deployment students (vs. 40% of pre-deployment stu-
dents) finished within 30 minutes. This preliminary evidence
supports that SARFGEN provides useful feedback. We also
added a couple of qualitative metrics in terms of a student
rating and comments about the provided feedback. The lat-
est overall user rating on a 1-5 scale is 3.74, showing overall
positive feedback.

5 Related Work

This section describes several strands of related work from
the areas of automated feedback generation, automated pro-
gram repair, fault localization and automated debugging.

5.1 Automated Feedback Generation

Recent years have seen the emergence of automated feedback
generation for programming assignments as a new, active
research topic. We briefly review the recent techniques.
AutoGrader [24] proposed a program synthesis based au-
tomated feedback generation for programming exercises.
The idea is to take a reference solution and an error model
consisting of potential corrections to errors student might
make, and search for the minimum number of corrections
using a SAT-based program synthesis technique. In con-
trast, Sarfgen advances the technology in the following
aspects: (1) Sarfgen completely eliminates the manual ef-
fort involved in the process of constructing the error model;

and (2) Sarfgen can perform more complex program repairs
such as adding, deleting, swapping statements, etc.
CLARA [11] is arguably the most similar work to ours.
Their approach is to cluster the correct programs and select
a canonical program from each cluster to form the reference
solution set. Given an incorrect student solution, CLARA
runs a trace-based repair procedure w.r.t. each program in
the solution set, and then selects the fix consisting of the
minimum changes. Despite the seeming similarity, Sarfgen
is fundamentally different from CLARA. At a conceptual
level, CLARA assumes for every incorrect student program,
there is a correct program whose execution traces/internal
states only differs because of the presence of the error. Even
though the program repairer generally enjoys the luxury
of abundant data in this setting, there are a considerable
amount of incorrect programs which yield new (partially)
correct execution traces. Since the trace-based repair pro-
cedure does not distinguish a benign difference from a fix,
it will introduce semantic redundancies which likely will
have a negative impact on student’s learning experience. As
we have presented in our evaluation, CLARA scales poorly
with increasing program size, and does not generate minimal
repairs on the benchmark programs.
sk_p [22] was recently proposed to use deep learning tech-
niques for program repair. Inspired by the skipgram model, a
popular model used in natural language processing [20, 21],
sk_p treats a program as a collection of code fragments, con-
sisting of a pair of statements with a hole in the middle, and
learns to generate the statement based on the local context.
Replacing the original statement with the generated state-
ment, one can infer the generated statement contains the
fix if the resulting program is correct. However, sk_p suffers
from low capability results, as the system only perform syn-
tactic analysis. Another issue with the deep learning based
approaches is low reusability. Significant efforts are needed
to retrain new models to be applied across new problems.
QLOSE [3] is another recent work for automatically re-
pairing incorrect solutions to programming assignments.
The major contribution of this work is the idea of measur-
ing the program distance not only syntactically but also
semantically, i.e., preserving program behavior regardless
of syntactic changes. One way to achieve this is by moni-
toring runtime execution. However, the repair changes to
an incorrect program is based on a pre-defined template
corresponding to a linear combination of constants and all
program variables in scope at the program location. As we
have shown, more complex modifications are necessary for
real-world benchmarks.
REFAZER [23] is another approach applicable in the do-
main of repairing program assignments. The idea is to learn
a syntactic transformation pattern from examples of state-
ment/expression instances before and after the modification.
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Despite the impressive results, this approach also suffers
from similar issues as QLOSE, i.e., there are many incorrect
programs that require changes more complex than simple
syntactic changes.
CoderAssist [16] presents a new methodology for gener-
ating verified feedback for student programming exercises.
The approach is to first cluster the student submissions ac-
cording to their solution strategies and ask the instructor to
identify a correct submission in each cluster (or add one if
none exists). In the next phase, each submission in a clus-
ter is verified against the instructor-validated submission
in the same cluster. Despite the benefit of generating veri-
fied feedback, there are several weaknesses. As mentioned,
CoderAssist requires manual effort from the instructor. More
importantly, the quality of the generated feedback relies on
how similar the provided solution is to the incorrect sub-
missions in the same cluster. In contrast, Sarfgen searches
through all possible solutions automatically and uses those
that it considers to be the most similar to repair the incorrect
program. In addition, CoderAssist targets dynamic program-
ming assignments only. Its utility and scalability would need
require further validation on other problems.

There is also work that addresses other learning aspects in
theMOOC setting. For example, Gulwani et al. [10] proposed
an approach to help students write more efficient algorithms
to solve a problem. Its goal is to teach students about the
performance aspects of a computing algorithm other than its
functional correctness. However, this approach only works
with correct student submissions, i.e., it cannot repair incor-
rect programs. Kim et al. [17] is another interesting piece of
work focusing on explaining the root cause of a bug in stu-
dents’ programs by comparing their execution traces. This
approach works by first matching the assignment statement
symbolically and then propagating to match predicates by
aligning the control dependencies of the matched assign-
ment statements. The key difference is that our work can
automatically repair the student’s code while Kim et al. [17]
can only illustrate the cause of a bug.

5.2 Automated Program Repair

Gopinath et al. [8] propose a SAT-based approach to gener-
ate repairs for buggy programs. The idea is to encode the
specification constraint on the buggy program into a SAT
constraint, whose solutions lead to fixes. Könighofer and
Bloem [18] present an approach based on automated error
localization and correction. They localize faulty components
with model-based diagnosis and then produce corrections
based on SMT reasoning. They only take into account the
right hand side (RHS) of the assignment statements as re-
placeable components. Prophet [19] learns a probabilistic,

application-independent model of correct code by gener-
alizing a set of successful human patches. There is also
work [13, 26] that models the problem of program repair
as a game. The two actors are the environment that provides
the inputs and a system that provides correct values for the
buggy expressions, so ultimately the specification is satisfied.
These approaches use simple corrections (e.g., correcting
the RHS sides of expressions) since they aim to repair large
programs with arbitrary errors. Another line of approaches
use program mutation [4], or genetic programming [1, 6] for
automated program repair. The idea is to repeatedly mutate
statements ranked by their suspiciousness until the program
is fixed. In comparison our approach is more efficient in
pinpointing the error and fixes as those mutation-based ap-
proaches face extremely large search space of mutants (1012).

5.3 Automated Debugging and Fault localization

Test cases reduction techniques like Delta Debugging [30]
and QuickXplain [15] can complement our approach by rank-
ing the likely fixes prior to dynamic analysis. The hope is
to expedite the minimization loop and ultimately speed up
performance. A major research direction of fault localiza-
tion [2, 9] is to compare faulty and successful executions.
Jose and Majumdar [14] propose an approach for error local-
ization from a MAX-SAT aspect. However, such approaches
suffer from their limited capability in producing fixes.

6 Conclusion

We have presented the “Search, Align, and Repair” data-
driven framework for generating feedback on introductory
programming assignments. It leverages the large number
of available student solutions to generate instant, minimal,
and semantic fixes to incorrect student submissions without
any instructor effort. We introduce a new program repre-
sentation mechanism using position-aware characteristic
vectors that are able to capture rich structural properties
of the program AST. These program embeddings allow for
efficient algorithms for searching similar correct programs
and aligning two programs to compute syntactic discrepan-
cies, which are then used to compute a minimal set of fixes.
We have implemented our approach in the Sarfgen system
and extensively evaluated it on thousands of real student
submissions. Our results show that Sarfgen is effective and
improves existing systems w.r.t. automation, capability, and
scalability. Since Sarfgen is also language-agnostic, we are
actively instantiating the framework to support other lan-
guages such as Python. Sarfgen has also been integrated
with the Microsoft-DEV204.1X edX course and the early
feedback obtained from online students demonstrates its
practicality and usefulness.
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