ICML 2023 |
Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey Hui, Joshua Howland, Jonathan Malmaud, Jacob Austin, Rishabh Singh, Michele Catasta. Measuring the Impact of Programming Language Distribution |
Neural Networks 2022 |
Marko Vasić, Andrija Petrović, Kaiyuan Wang, Mladen Nikolić, Rishabh Singh, Sarfraz Khurshid. MoET: Mixture of Expert Trees and its application to verifiable reinforcement learning |
TOPLAS 2022 |
Kensen Shi, David Bieber, Rishabh Singh Tf-coder: Program synthesis for tensor manipulations |
NeurIPS 2021 |
Shobha Vasudevan, Wenjie (Joe) Jiang, David Bieber, Rishabh Singh, Hamid Shojaei, C. Richard Ho, Charles Sutton. Learning Semantic Representations to Verify Hardware Designs |
NOW 2021 |
Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong Yue Neurosymbolic Programming |
ICML 2021 |
Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max Lin, Denny Zhou. SpreadsheetCoder: Formula Prediction from Semi-structured Context |
ICML 2021 |
Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, Manzil Zaheer. Latent Programmer: Discrete Latent Codes for Program Synthesis |
ICLR 2021 |
Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, Hanjun Dai. BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration |
ICLR 2021 |
Subham Sekhar Sahoo, Subhashini Venugopalan, Li Li, Rishabh Singh, Patrick Riley. Scaling Symbolic Methods using Gradients for Neural Model Explanation |
NeurIPS 2020 |
Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, Dale Schuurmans. Learning Discrete Energy-based Models via Auxiliary-variable Local Exploration |
ICML 2020 |
Jiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, Mayur Naik. Generating Programmatic Referring Expressions via Program Synthesis |
ICLR 2020 |
Vincent J. Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, David Bieber. Global Relational Models of Source Code |
POPL 2020 |
Shengwei An, Rishabh Singh, Sasa Misailovic, Roopsha Samanta. Augmented Example-based Synthesis using Relational Perturbation Properties |
ESOP 2020 |
Rong Pan, Qinheping Hu, Rishabh Singh, and Loris D’Antoni. Solving Program Sketches with Large Integer Values |
NeurIPS 2019 |
Hanjun Dai, Yujia Li, Chenglong Wang, Rishabh Singh, Po-Sen Huang, Pushmeet Kohli Learning Transferable Graph Exploration |
SAS 2019 |
Qinheping Hu, Roopsha Samanta, Rishabh Singh, Loris D'Antoni Direct Manipulation for Imperative Programs |
ICLR 2019 |
Marko Vasic, Aditya Kanade, Petros Maniatis, David Bieber, Rishabh Singh Neural Program Repair by Jointly Learning to Localize and Repair |
ICLR 2019 |
Richard Shin, Neel Kant, Kavi Gupta, Chris Bender, Brandon Trabucco, Rishabh Singh, Dawn Song Synthetic Datasets for Neural Program Synthesis |
CACM 2018 |
Rajeev Alur, Rishabh Singh, Dana Fisman, Armando Solar-Lezama. Search-based Program Synthesis |
NeurIPS 2018 |
Xin Zhang, Armando Solar-Lezama, Rishabh Singh. Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections |
ICML 2018 |
Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri. Programmatically Interpretable Reinforcement Learning |
NAACL 2018 |
Po-Sen Huang, Chenglong Wang,
Rishabh Singh, Wen-tau Yih, and
Xiaodong He. Natural
Langauge to Structured Query
Generation via Meta-Learning |
PLDI 2018 |
Ke Wang, Rishabh Singh, and Zhendong Su. Search, Align, and Repair: Data-driven Feedback Generation for Introductory Programming Exercises |
ICLR 2018 |
Ke Wang, Zhendong Su, and Rishabh Singh. Dynamic Neural Program Embeddings for Program Repair |
ICLR 2018 |
Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging Grammar and Reinforcement Learning for Neural Program Synthesis |
ICSE 2018 |
Sahil Bhatia, Pushmeet Kohli, and Rishabh Singh. Neuro-Symbolic Program Repair for Correcting Introductory Programming Assignments |
POPL 2018 |
Jeevana Inala and Rishabh Singh. WebRelate: Integrating Web Data with Spreadsheets using Examples |
POPL 2018 |
Xinyu Wang, Isil Dillig, and Rishabh Singh. Program Synthesis using Abstraction Refinement |
NIPS 2017 |
Jacob Devlin, Rudy Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural Program Meta-Induction |
SNAPL 2017 |
Rishabh Singh and Pushmeet Kohli. AP: Artificial Programming |
NOW 2017 |
Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program Synthesis |
ICML 2017 |
Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and Pushmeet Kohli. RobustFill: Neural Program Learning under Noisy I/O |
ASE 2017 |
Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&Fuzz: Machine Learning for Input Fuzzings |
OOPSLA 2017 |
Xinyu Wang, Isil Dillig, and Rishabh Singh. Synthesis of Data Completion Scripts using Finite Tree Automata |
FSE 2017 |
Loris D'Antoni, Rishabh Singh, and Michael Vaughn. NoFAQ: Synthesizing Command Repairs from Examples |
ICLR 2017 |
Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet Kohli. Neuro-symbolic Program Synthesis |
VLDB 2016 |
Rishabh Singh. BlinkFill: Semi-supervised Programming By Example for Syntactic String Transformations |
OOPSLA 2016 |
Xinyu Wang, Sumit Gulwani, and Rishabh Singh. FIDEX: Filtering Spreadsheet Data using Examples |
CAV 2016 |
Loris D'Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program Repair with Quantiative Objectives |
CHI 2016 |
Parmit K. Chilana, Rishabh Singh, and Philip J. Guo. Understanding Conversational Programmers: A Perspective from the Software Industry |
POPL 2016 |
Rishabh Singh and Sumit Gulwani. Transforming Spreadsheet Data Types using Examples |
UIST 2015 |
Mikael Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Oleksandr Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. User Interaction Models for Disambiguation in Programming by Example |
CAV 2015 |
Rishabh Singh and Sumit Gulwani. Predicting a Correct Program in Programming by Example |
SYNT 2015 |
Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Results and Analysis of SyGuS-Comp'15 |
TOCHI 2015 |
Elena L. Glassman, Jeremy Scott, Rishabh Singh, Philip J. Guo, and Robert C. Miller. OverCode: Visualizing Variation in Student Solutions to Programming Problems at Scale |
VMCAI 2014 |
Rohit Singh, Rishabh Singh, Zhilei Xu, Rebecca Krosnick, and Armando Solar-Lezama. Modular Synthesis of Sketches Using Models |
L@S 2014 |
Elena L. Glassman, Rishabh Singh, and Robert C. Miller. Feature engineering for clustering student solutions |
PLDI 2013 |
Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for introductory programming assignments |
FMCAD 2013 |
Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-guided synthesis |
VLDB 2012 |
Rishabh Singh and Sumit Gulwani. Learning Semantic String Transformations from Examples |
CACM 2012 |
Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation using examples |
CAV 2012 |
Rishabh Singh and Sumit Gulwani. Synthesizing Number Transformations from Input-Output Examples |
CAV 2012 |
Rishabh Singh and Armando Solar-Lezama. SPT: Storyboard Programming Tool |
FSE 2011 |
Rishabh Singh and Armando Solar-Lezama. Synthesizing data structure manipulations from storyboards |
CAV 2010 |
Rishabh Singh, Dimitra Giannakopoulou, and Corina Pasareanu. Learning Component Interfaces with May and Must Abstractions |
SPIN 2009 |
Andrey Rybalchenko and Rishabh Singh. Subsumer-First: Steering Symbolic Reachability Analysis |
ICSE 2009 |
Derek Rayside, Zev Benjamin, Rishabh Singh, Joseph Near, Aleksandar Milicevic, and Daniel Jackson. Equality and Hashing for (almost) Free: Generating Implementations from Abstraction Functions |